Prove the following :
(i)sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
(ii)
(iii)
(iv)tex]\frac{cos(90^{0}-A)sin(90^{0}-A)}{tan(90^{0}-A)}=sin^{2} A[/tex]
(v)sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Answers
SOLUTION :
Given :
(i) sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
L.H.S
sin θ sin (90° − θ) − cos θ cos (90° − θ)
= sin θ. cos θ − cos θ . sinθ
[sin (90° − θ) = cos θ & cos (90° − θ) = sin θ]
= sin θ [cos θ - cos θ]
= sin θ × 0
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
L.H.S = R.H.S
Hence, proved
(iv) cos (90° − A) . sin (90° − A) / tan (90° − A) = sin²A
L.H.S
cos (90° − A) . sin (90° − A) / tan (90° − A)
= sinA . cos A/ cotA
[sin (90° − θ) = cos θ & cos (90° − θ) = sin θ,tan (90° − θ ) = cot θ]
= sinA . cos A / (cos A/ sin A)
= sinA . cos A × sin A / cos A
cos (90° − A) . sin (90° − A) / tan (90° − A) = sin²A
L.H.S = R.H.S
Hence, proved
SOLUTION (ii), (iii) & (v) are in the attachment.
HOPE THIS ANSWER WILL HELP YOU...
<b></b>HeYaA mAtE
Here is your answer:-
___________________________
▇ ▅ █ ▅ ▇ ▂ ▃ ▁ Option C▁ ▅ ▃ ▅ ▅ ▄ ▅ ▇
____________________________
==>> Because this option match's the most from your answer.
==>> This is the right option for your question.
==>> Mark it as brain list .
Hope it helps you
Thanks