Math, asked by MysteriesGirl, 8 hours ago

Prove The Following.

i )
 \frac{tan³∅ - 1}{tan∅ - 1 }  = sec²∅   + tan∅

ii )
 \frac{sin∅-cos∅+1}{sin∅-cos∅ - 1}  =  \frac{1}{sec∅ \:  - tan \: ∅}

Answers

Answered by ythannyrana
0

Answer:

hard

hardStep-by-step explanation:

i )

 \frac{tan³∅ - 1}{tan∅ - 1 } = sec²∅ + tan∅

ii )

 \frac{sin∅-cos∅+1}{sin∅-cos∅ - 1} = \frac{1}{sec∅ \: - tan \: ∅}

Answered by XxitzZBrainlyStarxX
16

Question:-

Prove The Following.

\sf \: i )  \sf \frac{tan³∅ - 1}{tan∅ - 1 }  \sf= sec²∅ + tan∅

\sf \: ii )  \sf\frac{sin∅-cos∅+1}{sin∅-cos∅ - 1}  \sf= \frac{1}{sec∅ \: - tan \: ∅}

Given:-

\sf \: i )  \sf \frac{tan³∅ - 1}{tan∅ - 1 }  \sf= sec²∅ + tan∅

\sf \: ii )  \sf\frac{sin∅-cos∅+1}{sin∅-cos∅ - 1}  \sf= \frac{1}{sec∅ \: - tan \: ∅}

To Find:-

Needed to prove the Following Equation.

Question:-

i)

 \sf LHS =  \frac{tan {}^{3} \theta - 1 }{tan \theta - 1}  \sf =  \frac{(tan \theta - 1)(tan {}^{2} \theta + tan \theta + 1) }{(tan \theta - 1)}

= tan²θ + tanθ + 1

[∵a³ – b³ = (a – b) (a² + ab + b²) ]

= (1 + tan²θ) + tanθ = sec²θ + tanθ = RHS.

Answer:-

 \sf  \fbox\red{ =(1 + tan²θ) + tanθ = sec²θ + tanθ = RHS. }

____________________________________

ii)

 \sf LHS =  \frac{sin \theta - cos \theta + 1}{sin \theta  + cos \theta - 1}  =  \frac{tan \theta - 1 + sec \theta}{tan \theta + 1 - sec \theta}

 \sf =  \frac{(tan {}^{2} \theta - sec {}^{2}  \theta) - (tan \theta - sec \theta) }{ (tan \theta - sec \theta + 1)(tan \theta - sec \theta)}

 \sf =  \frac{ - 1 - tan \theta + sec \theta}{(tan \theta - sec \theta + 1)(tan \theta - sec \theta)}

\sf =  \frac{ { \cancel{-}} 1}{ { \cancel{-}} (sec \theta - tan \theta)}  =  \frac{1}{sec \theta - tan \theta}  \:  \: RHS

Answer:-

\sf  {=  \frac{ { \cancel{-}} 1}{ { \cancel{-}} (sec \theta - tan \theta)}  =  \frac{1}{sec \theta - tan \theta}  \:  \: RHS}

 \sf \huge \fbox \red{Hence, Proved.}

Hope you have satisfied.

Similar questions
Math, 8 hours ago