Prove the following identities
(1- sinA - CosA) = 2 ( 1-sinA) (1-cosA)
Answers
Answered by
0
Answer:
Actually, the question has some mistake.
The question shuold be:
Prove (1-sinA+cosA)²=2(1-sinA)(1-cosA)
Explanation:
Consider the L.H.S.:
(1-sinA+cosA)² = [(1-sinA) + cosA]²
= (1-sinA)² + cos²A + 2(1-sinA)cosA
= 1 + sin²A − 2sinA + cos²A +2(1-sinA)cosA
= 1 + (sin²A + cos²A) − 2sinA + 2•(1-sinA)• cosA
= 1 + 1 − 2sinA + 2(1-sinA)cosA [Since, sin²A + cos²A = 1]
= 2 − 2sinA + 2(1-sinA)cosA
= 2(1 − sinA) + 2(1-sinA)cosA
= 2(1 − sinA)(1 + cosA)
= 2(1 − sinA)(1 + cosA)
= R.H.S.
Please mark as brainliest
Similar questions