Prove the following identities :
Attachments:

Answers
Answered by
1
...........................like this
Attachments:



PraveshThapa:
Thank u Yasodha..
Answered by
1
1)
LHS = sin∅tan∅/1-cos∅
LHS = sin∅×sin∅/cos∅/1-cos∅
LHS = sin²∅/cos∅/1-cos∅
LHS = sin²∅/cos∅ × 1/1-cos∅
LHS = 1-cos²∅/cos∅ × 1/1-cos∅
LHS = (1+cos∅)(1-cos∅)/cos∅ × 1/1-cos∅
LHS = 1+cos∅/cos∅
LHS = 1/cos∅ + cos∅/cos∅
LHS = sec∅ + 1
LHS = RHS
___________________
2)
LHS = cos∅cot∅/1+sin∅
LHS = cos∅×cos∅/sin∅/1+sin∅
LHS = cos²∅/sin∅ × 1/1+sin∅
LHS = 1-sin²∅/sin∅ × 1/1+sin∅
LHS = (1+sin∅)(1-sin∅)/sin∅ × 1/1+sin∅
LHS = 1-sin∅/sin∅
LHS = cosec∅ - 1
LHS = RHS
______________________
LHS = sin∅tan∅/1-cos∅
LHS = sin∅×sin∅/cos∅/1-cos∅
LHS = sin²∅/cos∅/1-cos∅
LHS = sin²∅/cos∅ × 1/1-cos∅
LHS = 1-cos²∅/cos∅ × 1/1-cos∅
LHS = (1+cos∅)(1-cos∅)/cos∅ × 1/1-cos∅
LHS = 1+cos∅/cos∅
LHS = 1/cos∅ + cos∅/cos∅
LHS = sec∅ + 1
LHS = RHS
___________________
2)
LHS = cos∅cot∅/1+sin∅
LHS = cos∅×cos∅/sin∅/1+sin∅
LHS = cos²∅/sin∅ × 1/1+sin∅
LHS = 1-sin²∅/sin∅ × 1/1+sin∅
LHS = (1+sin∅)(1-sin∅)/sin∅ × 1/1+sin∅
LHS = 1-sin∅/sin∅
LHS = cosec∅ - 1
LHS = RHS
______________________
Similar questions
English,
9 months ago
Computer Science,
9 months ago
India Languages,
9 months ago
Science,
1 year ago
Physics,
1 year ago
English,
1 year ago
Physics,
1 year ago