Math, asked by mani123gtujh, 23 hours ago

Prove the following identities : (i) sin 0 cot 0 + sin 0 cosec 0 = 1 + cos O​

Answers

Answered by sriharsha8706
0

Step-by-step explanation:

sin 0 cot 0 = sin 0 x cos 0/ sin 0 = cos 0

sin 0 cosec 0 = sin 0 x 1/sin 0 = 1

So, sin 0 cot 0 + sin 0 cosec 0 = cos 0 + 1

Answered by varadad25
2

Answer:

\displaystyle{\boxed{\red{\sf\:\sin\:\theta\:\cot\:\theta\:+\:\sin\:\theta\:cosec\:\theta\:=\:1\:+\:\cos\:\theta\:}}}

Step-by-step-explanation:

We have given a trigonometric identity.

We have to prove that identity.

The given trigonometric identity is

\displaystyle{\sf\:\sin\:\theta\:\cot\:\theta\:+\:\sin\:\theta\:cosec\:\theta\:=\:1\:+\:\cos\:\theta}

\displaystyle{\sf\:LHS\:=\:\sin\:\theta\:\cot\:\theta\:+\:\sin\:\theta\:cosec\:\theta}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:(\:\cot\:\theta\:+\:cosec\:\theta\:)}

We know that,

\displaystyle{\boxed{\pink{\sf\:\cot\:\theta\:=\:\dfrac{1}{\tan\:\theta}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:\left(\:\dfrac{1}{\tan\:\theta}\:+\:cosec\:\theta\:\right)}

We know that,

\displaystyle{\boxed{\blue{\sf\:cosec\:\theta\:=\:\dfrac{1}{\sin\:\theta}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:\left(\:\dfrac{1}{\tan\:\theta}\:+\:\dfrac{1}{\sin\:\theta}\:\right)}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:\left(\:\dfrac{\sin\:\theta\:+\:\tan\:\theta}{\tan\:\theta\:.\:\sin\:\theta}\:\right)}

We know that,

\displaystyle{\boxed{\green{\sf\:\tan\:\theta\:=\:\dfrac{\sin\:\theta}{\cos\:\theta}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:\left(\:\dfrac{\sin\:\theta\:+\:\dfrac{\sin\:\theta}{\cos\:\theta}}{\dfrac{\sin\:\theta}{\cos\:\theta}\:\times\:\sin\:\theta}\:\right)}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:\left(\:\dfrac{\dfrac{\sin\:\theta\:.\:\cos\:\theta\:+\:\sin\:\theta}{\cos\:\theta}}{\dfrac{\sin\:\theta\:\times\:\sin\:\theta}{\cos\:\theta}}\:\right)}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:\left(\:\dfrac{\sin\:\theta\:.\:\cos\:\theta\:+\:\sin\:\theta}{\cancel{\cos\:\theta}}\:\times\:\dfrac{\cancel{\cos\:\theta}}{\sin\:\theta\:\times\:\sin\:\theta}\:\right)}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:\theta\:\left(\:\dfrac{\sin\:\theta\:.\:\cos\:\theta\:+\:\sin\:\theta}{\sin\:\theta\:\times\:\sin\:\theta}\:\right)}

\displaystyle{\implies\sf\:LHS\:=\:\cancel{\sin\:\theta}\:\times\:\dfrac{\sin\:\theta\:.\:\cos\:\theta\:+\:\sin\:\theta}{\cancel{\sin\:\theta}\:\times\:\sin\:\theta}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\sin\:\theta\:.\:\cos\:\theta\:+\:\sin\:\theta}{\sin\:\theta}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cancel{\sin\:\theta}\:(\:\cos\:\theta\:+\:1\:)}{\cancel{\sin\:\theta}}}

\displaystyle{\implies\sf\:LHS\:=\:\cos\:\theta\:+\:1}

\displaystyle{\sf\:RHS\:=\:\cos\:\theta\:+\:1}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS}}}}

Hence proved!

Similar questions