Prove the following identities tan theta + sec theta minus one upon tan theta minus sec theta + 1 is equal to 1 + sin theta upon cos theta
Answers
Answered by
0
Solution:
Used the trigonometric identity: sec²A- tan²A=1, to solve the problem.
\begin{lgathered}=\frac{tan A + sec A -1}{tan A - sec A +1}\\\\ =\frac{(tan A + sec A) -(Sec^2A-tan^2A)}{tan A - sec A +1}\\\\ =\frac{(tan A + sec A)[1-(sec A-tan A)]}{tan A - sec A +1}\\\\=\frac{(tan A + sec A)[1-sec A+tan A)]}{tan A - sec A +1}\\\\= tan A + sec A\\\\= \frac{sin A}{cosA}+\frac{1}{cosA}\\\\ =\frac{1 +sinA}{cosA}\end{lgathered}
=
tanA−secA+1
tanA+secA−1
=
tanA−secA+1
(tanA+secA)−(Sec
2
A−tan
2
A)
=
tanA−secA+1
(tanA+secA)[1−(secA−tanA)]
=
tanA−secA+1
(tanA+secA)[1−secA+tanA)]
=tanA+secA
=
cosA
sinA
+
cosA
1
=
cosA
1+sinA
Hence proved.
Similar questions