Math, asked by llakhera1099, 1 year ago

prove the following identities tan0/1-cot0 + cot0/1-tan0 = 1+sec0 cosec0

Answers

Answered by ajmalz444
113
LHS = tanO/(1-cotO) + cotO/(1-tanO)
 \frac{ \frac{sinO}{cosO} }{1- \frac{cosO}{sinO} } +\frac{ \frac{cosO}{sinO} }{1- \frac{sinO}{cosO} } \\ =\frac{ \frac{sinO}{cosO} }{ \frac{sinO-cosO}{sinO} } +\frac{ \frac{cosO}{sinO} }{ \frac{cosO-sinO}{cosO} } \\ = \frac{sin^2O}{cosO(sinO-cosO)} + \frac{cos^2O}{sinO(cosO-sinO)}  \\ = \frac{sin^2O}{cosO(sinO-cosO)} - \frac{cos^2O}{sinO(sinO-cosO)} \\ = \frac{sin^3O-cos^3O}{sinOcosO(sinO-cosO)}  \\ =\frac{(sinO-cosO)(sin^2O+cos^2O+sinOcosO)}{sinOcosO(sinO-cosO)} \\ = \frac{1+sinOcosO}{sinOcosO}  \\
= [1 +(1/cosecOsecO)]/[1/cosecOsecO]
=[(cosecOsecO+1)/cosecOsecO]*[cosecOsecO]
=cosecOsecO+1
=RHS

Hence proved

If you've doubt dont hesitate to ask
Answered by bhagyav737
16

Answer:

hope it helps

pls mark as brainliest

Attachments:
Similar questions