Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
a. cosA/(1+sinA)+(1+sinA)/cosA=2secA.
b. (1+secA)/secA=sin2A/(1−cosA)
c. √(1 + sinA)/(1−sinA) =secA+tanA
Answers
Answered by
1
Answer:
1. cosA / (1+sinA) + (1+sinA) / cosA = 2secA.
Taking the L.H.S. we have,
cosA / (1+sinA) + (1+sinA) / cosA
= cos^2A + (1 + sinA)^2 / cosA (1+sinA)
= cos^2A + 1 + sin^2A + 2sinA / cosA (1+sinA)
= cos^2A + sin^2A + 1 + 2sinA / cosA (1+sinA)
= 1 + 1 + 2sinA / cosA (1+sinA)
= 2 + 2sinA / cosA (1+sinA)
= 2 (1+sinA) / cosA (1+sinA)
= 2 / cosA
= 2secA
= R.H.S
2. (1+secA) / secA = sin^2A / (1−cosA)
Taking the R.H.S. we have
sin^2A / (1−cosA)
1 - cos^2A / 1 - cosA
= ( 1 - cosA ) ( 1 + cosA ) / 1 - cosA
= 1 + cosA
= 1 + 1/secA
= 1 + secA / secA
= L.H.S
3. √(1 + sinA) / (1−sinA) = secA + tanA
Taking the L.H.S. we have
=
=
=
=
=
=
=
=
= secA + tanA
= R.H.S
Step-by-step explanation:
Answered by
0
Step-by-step explanation:
step step explanation in image
Attachments:
Similar questions