Math, asked by bandanaarubam, 4 months ago

Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
cosA
1+sin A
+
1 + sinA
cos A =2 sec A​

Answers

Answered by sedara652
0

Answer:

LHS =(cosec θ−cotθ)

2

=(

sinθ

1

sinθ

cosθ

)

2

=

sin

2

θ

(1−cosθ)

2

=

1−cos

2

θ

(1−cosθ)

2

=

1+cosθ

1−cosθ

=RHS

(ii)

LHS :

1+sinA

cosA

+

cosA

1+sinA

=

(1+sinA)(cosA)

cos

2

A+(1+sinA)

2

=

(1+sinA)(cosA)

1+sin

2

A+cos

2

A+2sinA

=

(1+sinA)(cosA)

2+2sinA

=

(1+sinA)(cosA)

2(1+sinA)

=

cosA

2

=2secA

=RHS

(iii)

LHS :

1−cosθ

tanθ

+

1−tanθ

cotθ

=

sinθ

sinθ−cosθ

cosθ

sinθ

+

cosθ

cosθ−sinθ

sinθ

cosθ

=

sinθ−cosθ

1

[

cosθ

sin

2

θ

sinθ

cos

2

θ

]

=[

sinθ−cosθ

1

][

sinθcosθ

sin

3

θ−cos

3

θ

]

=

sinθcosθ

sin

2

θ+cos

2

θ+sinθcosθ

=

sinθcosθ

1+sinθcosθ

=secθcosec θ+1

=RHS

(iv)

secA

1+secA

=

cosA

1

1+

cosA

1

=

1

cosA+1

=

1−cosA

(cosA+1)(1−cosA)

=

1−cosA

sin

2

A

=RHS

(v)

cosA+sinA−1

cosA−sinA−1

=

sinA

cosA

+

sinA

sinA

+

sinA

1

sinA

cosA

sinA

sinA

+

sinA

1

=

cosA+1−cosec A

cotA−1+cosec A

(cotA)

2

−(1−cosec A)

2

(cotA−1+cosec A)

2

=

(−1−1+2cosA)

(2cosec A−2)(cosec A+cotA)

=cosec A+cotA

=RHS

(vi)

(1−sinA)(1+sinA)

(1+sinA)(1+sinA)

=

cosA

1+sinA

=secA+tanA

=RHS

(vii)

2cos

3

θ−cosθ

sinθ−2sin

3

θ

=

cosθ(2cos

2

θ−1)

sinθ(1−2sin

2

θ)

=tanθ[

2−2sin

2

θ−1

(1−2sin

2

θ)

]

=tanθ= RHS

(viii)

(sinA+cosec A)

2

+(cosA+secA)

2

=sin

2

A+cosec

2

A+2sinA⋅cosec A+cos

2

A+sec

2

A+2sec⋅cosA

=1+(1+cot

2

A+1+tan

2

A)+2+2

=7+tan

2

A+cot

2

A

=RHS

(ix)

LHS : (cosec A−sinA)(secA−cosA)

=(

sinA

1

−sinA)(

cosA

1

−cosA)

=(

sinA

1−sin

2

A

)(

cosA

1−cos

2

A

)=

sinAcosA

(cos

2

A)(sin

2

A)

=sinAcosA

RHS :

tanA+cotA

1

=

sin

2

+cos

2

A

sinAcosA

=sinAcosA

∴LHS=RHS

(x)

LHS :

1+cot

2

A

1+tan

2

A

=

1+

sin

2

A

cos

2

A

1+

cos

2

A

sin

2

A

=

sin

2

A

1

cos

2

A

1

=

cos

2

A

sin

2

A

=tan

2

A

RHS : (

1−cotA

1−tanA

)

2

=

1+cot

2

A−2cotA

1+tan

2

−2tanA

=

cosec

2

A−2cotA

sec

2

A−2tanA

=

sin

2

A

1−2sinAcosA

cos

2

A

1−2sinAcosA

=

cos

2

A

sin

2

A

=tan

2

A

∴LHS=RHS

Similar questions