prove the following identity-
1/cosecA - cot A - 1/sinA = 1/sinA - 1/cosecA + cotA. I want all answer no copy hrrr
Answers
Answered by
23
To Prove :-
Proof :-
Let us start with LHS first. We have,
Now for RHS, we have,
From ( 1 ) & ( 2 ) we can conclude that LHS = RHS. Hence, the given identity is proved.
Answered by
7
✅ 1/cosecA - cot A - 1/sinA = 1/sinA - 1/cosecA + cotA.
Solving LHS :-
1/cosec A - cot A - 1/ sin A
= 1/cosec A - cot A * cosec A + cot A/cosec A + cot A - 1/sin A
= (cosec A + cot A)/(cosec^2A - cot^2A) - 1/sin A
= (cosec A + cot A)/(cosec^2A - cot^2A) - cosec A
= cosec A + cot A - cosec A
= cot A.
Solving RHS :-
1/sin A - 1/cosecA+cotA
= cosecA - (cosecA - cotA)/(cosec^2A - cot^2A)
= cosec A - (cosec A - cot A)
= cosec A - cosec A + cot A
= cot A.
✨Hence, LHS = RHS.
=> CotA = CotA
☑ So, 1/cosecA - cot A - 1/sinA = 1/sinA - 1/cosecA + cotA.
Hence Proved.✔✔
____________________________________
rohitkumargupta:
when solving LHS you directly put (a + b)/(a² - b²)
Similar questions