Math, asked by muzammilhusain7681, 1 year ago

Prove the following identity :
(1 + cot A - cosec A) (1 + tan A + sec A)=2

Answers

Answered by NightFury
1

LHS =

(1 + cot \: a - cosec \: a) (1 + tan \: a + sec \: a)=2

(1 +  \frac{ \cos(a) }{ \sin(a) }  -  \frac{1}{ \sin(a) } )(1 +  \frac{ \sin(a) }{cos(a)}  +  \frac{1}{ \cos(a) } )

Taking LCM

( \frac{ \sin(a) +  \cos(a) - 1  }{ \sin(a) } )( \frac{ \cos(a) +  \sin(a)  + 1) }{ \cos(a) } )

 \frac{ {( \sin(a) +  \cos(a))  }^{2} -  {1}^{2}  }{ \sin(a) \cos(a)  }

 \frac{ { \sin }^{2}a +  { \cos }^{2}a \:  + 2 \sin(a) \cos(a)  - 1   }{ \sin(a) \cos(a)  }

 \frac{1 - 2 \sin(a) \cos(a) - 1  }{ \sin(a) \cos(a)  }

 \frac{2 \sin(a) \cos(a)  }{ \sin(a) \cos(a)  }

2 = RHS

LHS=RHS

Answered by Anonymous
20

SOLUTION:-

We have,

(1+cotA -cosecA) (1+tanA+secA)=2

Take L.H.S

(1 + tanA+ secA)(1 + cotA - cosecA) \\  \\  =  > (1 + cotA - cosecA)  + tanA(1 + cotA - cosecA) + secA( 1 + cotA - cosecA) \\  \\  =  > (1 + cotA - cosecA) + tanA + tanA\: cotA- tanA  \: cosecA + secA + secA\: cotA - secA\: cosecA \\  \\  =  > 1 + cotA - cosecA + tanA + 1 - tanA \: cosecA+ secA +  \frac{1}{cosA}  \times  \frac{cosA}{sinA}  - secA \: cosecA \\  \\  =  > 2 + cotA - cosecA+ tanA - tanA\: cosecA + secA + cosecA - secA \: cosecA\\  \\  =  > 2 + (cotA+ tanA) - (tanA \: cosecA - secA) - secA\: cosecA\\  \\  =  > 2 + ( \frac{cosA}{sinA }  +  \frac{sinA}{cosA} ) - ( \frac{sinA}{cosA}  \times  \frac{1}{sinA}   -  \frac{1}{cosA} ) - secA \: cosecA\\  \\  =  > 2 +  \frac{ {cos}^{2}A +  {sin}^{2}  A}{sinA \: cosA}  - ( \frac{1}{cosA}  -  \frac{1}{cosA} ) - secA \: cosecA \\  \\  =  > 2 + secA \: cosecA - secA\: cosecA \\  \\  =  > 2 + 0 \\  \\  =  > 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [R.H.S.]

Proved.

Similar questions