Math, asked by tiki46, 3 months ago

Prove the following identity:1)tan A= n tan B and sin A= m sin B.Prove that cos²A=m²-1/n²-1​

Answers

Answered by adhithyavinay
0

Answer:

Step-by-step explanation:

Given that,  

tan

A

=

n

tan

B

sin

A

cos

A

=

n

sin

B

cos

B

.

sin

A

sin

B

=

n

cos

A

cos

B

...

...

...

...

...

...

...

...

...

...

...

...

.

1

.

Also given that,  

sin

A

=

m

sin

B

sin

A

sin

B

=

m

...

...

...

...

...

...

...

2

.

Comparing  

1

and

2

,

we get,

m

=

n

cos

A

cos

B

,

giving,  

cos

B

=

n

m

cos

A

...

...

3

.

2

sin

B

=

1

m

sin

A

...

...

...

...

...

...

...

...

...

...

...

.

.

2

'

.

Now, using  

2

'

and

3

in  

cos

2

B

+

sin

2

B

=

1

,

we get,

n

2

m

2

cos

2

A

+

1

m

2

sin

2

A

=

1

.

n

2

cos

2

A

+

sin

2

A

=

m

2

.

n

2

cos

2

A

+

(

1

cos

2

A

)

=

m

2

.

n

2

cos

2

A

cos

2

A

=

m

2

1

,

i

.

e

.

,

(

n

2

1

)

cos

2

A

=

(

m

2

1

)

.

cos

2

A

=

m

2

1

n

2

1

,

as desired!

Enjoy Maths.!

Answered by soumyadipdas67
0

Formula used:

tan²a-tan²b = (sin²a-sin²b)/cos²a*cos²b

Attachments:
Similar questions