Math, asked by bindujayant, 1 year ago

Prove the following identity:

Attachments:

Answers

Answered by vishal000145
0

Answer:

dlhfiguosu5f97tUrgiftgpgtfph

Answered by Anonymous
6

ANSWER:-

Given:

If x= asin∅, y= btan∅ .

To prove:

 \frac{ {a}^{2} }{ {x}^{2} }  -  \frac{ {b}^{2} }{ {y}^{2} }  = 1

Proof:

Take L.H.S

 \frac{ {a}^{2} }{ {x}^{2} }  -  \frac{ {b}^{2} }{ {y}^{2} }  \\  \\  =  >  \frac{ {a}^{2} }{ {a}^{2}  {sin}^{2} \theta }  -  \frac{ {b}^{2} }{ {b}^{2}  {tan}^{2}  \theta}  \\  \\  =  >  \frac{1}{ {sin}^{2} \theta }  -  \frac{1}{ {tan}^{2} \theta }  \\  \\  =  >  \frac{ {tan}^{2} \theta -  {sin}^{2} \theta  }{ {sin}^{2}  \theta \:  { tan }^{2}  \theta}  \\  \\  =  >  \frac{ {tan}^{2} \theta(1 -  \frac{ {sin}^{2} \theta }{ {tan}^{2} \theta } ) }{ {tan}^{2} \theta {sin}^{2}  \theta }  \\  \\  =  >  \frac{1 -  {cos}^{2}  \theta}{ {sin}^{2}  \theta}  \\  \\  =  >  \frac{ {sin}^{2}  \theta}{ {sin}^{2 } \theta }  \\  \\  =  > 1 \:  \:  \:  \:  \:  \: [R.H.S]

Hence,

Proved.

Hope it helps ☺️

Similar questions