Math, asked by drmalik021, 9 months ago

Prove the following identity ​

Attachments:

Answers

Answered by BrainlyTornado
4

QUESTION:

Prove the following identity:

 \sf \dfrac{cos \ \theta }{ tan \ \theta(1 -sin \ \theta)} = 1 +  \dfrac{1}{ sin \  \theta}

GIVEN:

 \sf \dfrac{cos \ \theta }{ tan \ \theta(1 - cos \ \theta)} = 1 +  \dfrac{1}{ sin \  \theta}

TO PROVE:

 \sf \dfrac{cos \ \theta }{ tan \ \theta(1 - sin\ \theta)} = 1 +  \dfrac{1}{ sin \  \theta}

EXPLANATION:

 \sf Take\ L.H.S\ as \ \dfrac{cos \ \theta }{ tan \ \theta(1 - sin\ \theta)}

\sf Take\ R.H.S \ as\ 1 +  \dfrac{1}{ sin \  \theta}

Take L.H.S:

 \sf  \dfrac{cos \ \theta }{ tan \ \theta(1 - sin\ \theta)}

Multiply by 1 + sin θ on both numerator and denominator.

 \sf  \dfrac{cos \ \theta }{ tan \ \theta(1 - sin\ \theta)}   \times \dfrac{(1  + sin\ \theta)}{(1  + sin\ \theta)}

 \sf  \dfrac{cos \ \theta(1 + sin\ \theta) }{ tan \ \theta(1 - sin^{2} \ \theta)}

 \boxed{ \bold{ \large{ \gray{ 1 - sin^2\ \theta = cos^2\ \theta}}}}

 \sf  \dfrac{cos \ \theta(1 +  sin\ \theta) }{ tan \ \theta(cos^{2} \ \theta)}

 \sf  \dfrac{1  + sin\ \theta}{ tan \ \theta(cos \ \theta)}

 \boxed{ \bold{ \large{ \gray{tan\ \theta =  \frac{sin \ \theta}{ cos\ \theta}}}}}

 \sf  \dfrac{1 + sin\ \theta}{ \dfrac {sin\ \theta}{ cos \ \theta}(cos \ \theta)}

 \sf  \dfrac{1  +  sin\ \theta}{sin\ \theta}

 \sf  \dfrac{  sin\ \theta}{sin\ \theta}  +  \dfrac{1}{sin\ \theta}

 \sf  1+  \dfrac{1}{sin\ \theta}

Take R.H.S:

\sf 1 +  \dfrac{1}{ sin \  \theta}

L.H.S = R.H.S

 \sf \dfrac{cos \ \theta }{ tan \ \theta(1 - cos \ \theta)} = 1 +  \dfrac{1}{ sin \  \theta}

HENCE PROVED.

Note : Refer attachment.

Attachments:
Answered by sk181231
11

Answer:

Refer to the attachment

Attachments:
Similar questions