Math, asked by midnightgirl348, 5 months ago


Prove the following identity :​

Attachments:

Answers

Answered by chandbhalodia2005
0

Answer:

i hope my answer will help you.

Attachments:
Answered by Seafairy
70

\large\underline\textbf{Question :}

\text{Prove the following identity }

\large\mathtt{\frac{\cos\theta}{1-\sin\theta}+\frac{1-\sin\theta}{\cos\theta}=2\sec\theta}

\large\underline\textbf{Solution :}

\large\mathsf{\implies \frac{\cos\theta}{1-\sin\theta}+\frac{1-\sin\theta}{\cos\theta}=2\sec\theta}

\large\mathsf{\implies \frac{\cos^2\theta+{(1-\sin\theta)}^{2}}{2cos\theta(1-\sin\theta)}}

\large\mathsf{\implies \frac{{cos}^{2}\theta+1-2\sin\theta+{\sin}^{2}\theta}{\cos\theta(1-\sin\theta)}}

\color{Deeppink}{(\because {a-b}^{2}=a^2-2ab+b^2)}

\large\mathsf{\implies \frac{1+1-2\sin\theta}{\cos\theta(1-\sin\theta)}}

\color{deeppink}{(\because \sin^2\theta+\cos^2\theta=1)}

\large\mathsf{\implies \frac{2(1-\sin\theta)}{\cos\theta(1-\sin\theta)}}

\large\mathsf{\implies \frac{2}{\cos\theta}\implies2\times \frac{1}{\cos\theta} }

\large\mathsf{\implies 2\sec\theta }

\textbf{hence proved }

Similar questions