Math, asked by gurmehak231, 3 months ago

PROVE THE FOLLOWING IDENTITY

Attachments:

Answers

Answered by corpsecandy
1

Answer:

See below.

Step-by-step explanation:

LHS:

\frac{1}{cosec\Theta + cot\Theta } - \frac{1}{sin\Theta}

=\frac{1}{\frac{1}{sin\Theta}+\frac{cos\Theta}{sin\Theta}} - \frac{1}{sin\Theta}              [cosec\Theta = \frac{1}{sin\Theta} and cot\Theta = \frac{cos\Theta}{sin\Theta}]

=\frac{sin\Theta}{1+cos\Theta} - \frac{1}{sin\Theta}

=\frac{(sin\Theta \times sin\Theta) - 1 \times (1+cos\Theta)}{(1+cos\Theta) \times sin\Theta}

=\frac{(sin^2\Theta) -  (1+cos\Theta)}{sin\Theta  (1+cos\Theta)}

=\frac{(sin^2\Theta- 1)-(cos\Theta)}{sin\Theta  (1+cos\Theta)}

=\frac{-cos^2\Theta - cos\Theta}{sin\Theta  (1+cos\Theta)}                       [sin^2\Theta + cos^2\Theta = 1]

=\frac{-cos\Theta(cos\Theta + 1)}{sin\Theta  (cos\Theta+1)}

=-cot\Theta

RHS:

\frac{1}{sin\Theta} - \frac{1}{cosec\Theta - cot\Theta}

=\frac{1}{sin\Theta} - \frac{1}{\frac{1}{sin\Theta}-\frac{cos\Theta}{sin\Theta}}               [cosec\Theta = \frac{1}{sin\Theta} and cot\Theta = \frac{cos\Theta}{sin\Theta}]

=\frac{1}{sin\Theta}- \frac{sin\Theta}{1-cos\Theta}

=\frac{ 1 \times (1-cos\Theta) - (sin\Theta \times sin\Theta)}{sin\Theta \times (1-cos\Theta)}

=\frac{(1-cos\Theta)-(sin^2\Theta) }{sin\Theta (1-cos\Theta)}

=\frac{-cos\Theta + (1-sin^2\Theta)}{sin\Theta (1-cos\Theta)}

=\frac{cos^2\Theta - cos\Theta}{sin\Theta (1-cos\Theta)}                        [sin^2\Theta + cos^2\Theta = 1]

=\frac{-cos\Theta(1-cos\Theta)}{sin\Theta  (1-cos\Theta)}

=-cot\Theta

Therefore LHS = RHS. Hence Proved.

Any corrections or suggestions for improvement are welcome :)

Similar questions