Math, asked by TITANSTAR, 1 year ago

Prove the following identity :

Attachments:

Answers

Answered by Sudhir1188
0
put the value of all the ratios and make LHS =RHS

TITANSTAR: as if I don't know that
Sudhir1188: find in ur book
TITANSTAR: are u mad I know that we should prove LHS =RHS but I did not get the answer so I posted the question here and u answer if u know to do the sum instead don't comment
Answered by pulkitraina260ovri2y
1

 lhs \:  = \frac{1}{ \sin( {x}^{2} ) \cos( {x}^{2} )  }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{( \sin( {x}^{2} ) +  \cos( {x}^{2} ) )^{2}  }{ \sin( {x}^{2} ) \cos( {x}^{2} )  }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ \sin( {x}^{4} ) +  \cos( {x}^{4} )  + 2 \sin( {x}^{2} ) \cos( {x}^{2} )   }{ \sin( {x}^{2} )  \cos( {x}^{2} ) }  \\  \:  \:  \:  \:  \:  \:  \:  \:  =  \tan( {x}^{2} ) +  \cot( {x }^{2} )   + 2 \\  \:  \:  \:  \:  \:  \:  \:  = rhs
please mark brainliest

pulkitraina260ovri2y: divide each term of numerator by denominator
pulkitraina260ovri2y: did u get it
pulkitraina260ovri2y: ??
TITANSTAR: how did u get tan and cot
pulkitraina260ovri2y: thats what when u divide sin^4x by (sin^2x)(cos^2x) we get tan^2x
pulkitraina260ovri2y: she for cot
pulkitraina260ovri2y: same for cot
TITANSTAR: ya I got it
TITANSTAR: tq
pulkitraina260ovri2y: pls mark brainliest whenever possible
Similar questions