Math, asked by DwayneSilveira, 1 month ago

prove the following identity:​

Attachments:

Answers

Answered by MystiiNuts
164

Question:

Prove-:

\frac{sec²A}{tan²A} +\frac{cosec²A}{cot²A} =sec²A×cosec²A

Answer:

LHS =\large\frac{sec²A}{tan²A} +\large\frac{cosec²A}{cot²A}

\implies \large\frac{1/cos²A}{sin²A/cos²A} + \large\frac{1/sin²A}{cos²A/sin²A}

\implies \large\frac{cos²A}{cos²A×Sin²A} + \large\frac{sin²A}{sin²A×cos²A}

\implies \large\frac{1}{sin²A} ×\large\frac{1}{cos²A}

\implies \large\frac{1}{sin²A×cos²A}  \: \: \: (1)

RHS =sec²A×cosec²A

\implies \large\frac{1}{cos²A} ×\large\frac{1}{sin²A}

\implies \large\frac{1}{cos²A×sin²A}  \: \: \: (2)

From (1) &(2) we get,

\boxed{LHS=RHS}

i.e,

\large\frac{sec²A}{tan²A} +\large\frac{cosec²A}{cot²A} ={sec²A×cosec²A}

\underline\color{purple}\boxed{Hence \: Proved!!}

Answered by XxLonelyArmyGirlxX
5

Answer:

Hope this helps you :)

Step-by-step explanation:

Mark me as brainlist please

Attachments:
Similar questions