Math, asked by Ayush1903, 1 year ago

Prove the following identity

Attachments:

Answers

Answered by Brainergy
1
 \frac{1 + \tan( \alpha ) }{ \sin( \alpha ) } = \frac{ \frac{1 + \tan( \alpha ) }{ \sin( \alpha ) } }{ \frac{ \sin( \alpha ) }{ \sin( \alpha ) } } = \frac{1}{ \sin( \alpha ) } + \frac{1}{cos( \alpha )} = \sec( \alpha ) + cosec( \alpha ) \\ \\
Similarly
 \frac{1 + \cot( \alpha ) }{ \cos( \alpha ) } = \frac{ \frac{1 + \cot( \alpha ) }{ \cos( \alpha ) } }{ \frac{ \cos( \alpha ) }{ \cos( \alpha ) } } = \frac{1}{ \cos( \alpha ) } + \frac{1}{ \sin( \alpha ) } = \sec( \alpha ) + cosec( \alpha )

Adding, we get
2(secA + cosecA)

Please mark as brainliest

Ayush I answered first

Ayush1903: That last line though XD
Answered by Anonymous
0
ℌ◎℘℮ ї† ℌ℮ℓ℘﹩ ♭ʊ∂∂¥
Attachments:

Ayush1903: Because you clicked the pic of the answer instead of typing it
Ayush1903: That increases readability
Ayush1903: Thans bro
Ayush1903: change that font
Ayush1903: It's making my eyes bleed
Similar questions