Math, asked by beginnerss, 3 months ago

Prove the following identity:
cos A /1+ sin A
+
1+ sin A/ cos A
= 2 sec A

Answers

Answered by AryanDubey124
3

please mark me as brain list

Attachments:
Answered by Anonymous
12

\huge{\underline{\underline{\underline{\sf{\red{ムɳรᏇɛƦ ࿐}}}}}}

Given:

\to \sf \dfrac{cosA}{1 + sinA} + \dfrac{1 + sinA}{cosA} = 2secA

Now take LHS:

\to \sf \dfrac{cosA}{1 + sinA} + \dfrac{1 + sinA}{cosA}

Take LCM

\sf \to\dfrac{(cosA)(cosA) + (1 + sinA)(1 + sinA)}{cosA(1 +sin A)}

\sf \to\dfrac{(cos^{2} A)+ (1 + sinA) {}^{2} }{cosA(1 +sin A)}

\sf \to \dfrac{cos {}^{2} A + 1 + sin {}^{2}A + 2sin A}{cosA(1 +sinA) }

\sf \to \dfrac{1+ 1+ 2sin A}{cosA(1 +sinA) }

\sf \to \dfrac{2+ 2sin A}{cosA(1 +sinA) }

\sf \to \dfrac{2(1+ sin A)}{cosA(1 +sinA) }

\large\bf{\pink{\sf \to \dfrac{2 \cancel{(1+ sin A)}}{cosA \cancel{(1 +sinA)} }} }

\sf \to \dfrac{2}{cosA}

\sf \to {2}{secA}

Hence Proved

Similar questions