Math, asked by abhaytirkey956, 4 months ago

prove the following identity cos A/1+sinA + 1+sin A/CosA= 2secA​

Answers

Answered by vipashyana1
0

Answer:

 \frac{cosA}{1 + sinA}  +  \frac{1 + sinA}{cosA}  = 2secA \\  \frac{ {(cosA)}^{2} +  {(1 + sinA)}^{2}}{cosA(1  + sinA)}  = 2secA \\  \frac{ {cos}^{2}A + 1 + 2sinA +  {sin}^{2}  A}{cosA(1 + sinA)}  = 2secA \\  \frac{ {cos}^{2}A +  {sin}^{2} A + 1 + 2sinA }{cosA(1 + sinA)}  = 2secA \\  \frac{1 + 1 + 2sinA}{cosA(1 + sinA)}  = 2secA \\  \frac{2 + 2sinA}{cos(1  + sinA)}  = 2secA \\  \frac{2(1 + sinA)}{cos(1 + sinA)}  = 2secA \\  \frac{2}{cosA}  = 2secA \\ 2 \times  \frac{1}{cosA}  = 2secA \\ 2secA = 2secA \\ LHS=RHS \\ Hence \: proved

Similar questions