Prove the following identity
if x= a sec 0 + b tan 0 and y = a tan 0 +b sece, prove that x2 - y2 = a²- b²
Answers
Answer:
pls follow low followers
Given :-
x = asecθ + btanθ
y = atanθ + bsecθ
To prove :-
x² - y² = a² - b²
Solution :-
Take LHS x² - y²
x² = (asecθ + btanθ)²
y² = (a tanθ + b secθ)²
x² - y² = (asecθ + btanθ)² - (a tanθ + b secθ)²
Using ( a + b)² formula
a² + 2ab + b²
x² - y² = a² sec²θ + b²tan²θ + 2absecθtanθ - [a²tan² θ+ b²sec²θ + 2absecθtanθ]
x² - y² = a² sec²θ + b²tan²θ + 2absecθtanθ - a² tan²θ - b² sec²θ - 2ab secθ tanθ
x² - y² = a²sec²θ - a²tan²θ + b²tan²θ - b²sec²θ + 2absecθtanθ - 2absecθtanθ
x² - y² = a²sec²θ - a²tan²θ + b²tan²θ - b²sec²θ
Take common a² & b²
x² - y² = a²(sec²θ - tan²θ) + b² (tan²θ - sec²θ)
Take common "-" in (tan²θ - sec²θ)
x² - y² = a²(sec²θ - tan²θ) - b² ( -tan²θ + sec²θ)
x²-y² = a²(sec²θ - tan²θ) - b² (sec²θ - tan²θ)
We know that
sec²θ - tan²θ = 1
x² -y² = a²(1) - b²(1)
x² - y² = a² - b²
Hence proved !
LHS = RHS
Know more
Trignometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trignometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trignometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj