Math, asked by Anonymous, 9 months ago

Prove the following identity. Kindly, don't spam. Irrelevant answer will be reported.​

Attachments:

Answers

Answered by MOSFET01
12

Solution :



\dfrac{1+sin}{cosecA-cotA} \: - \: \dfrac{1+sin}{cosecA+cotA} \:=\: 2(1+cot A)

TAKE LHS

\implies \dfrac{1+sinA}{\dfrac{1}{sinA}-\dfrac{cosA}{sinA}} \: - \:\dfrac{1-sinA}{\dfrac{1}{sinA}+\dfrac{cosA}{sinA}}

\implies \dfrac{1+sinA}{\dfrac{1-cosA}{sinA}}\: - \:\dfrac{1-sinA}{\dfrac{1+cosA}{sinA}}

\implies\dfrac{sinA(1+sinA)}{1-cosA}\:-\:\dfrac{sinA(1-sinA)}{1+cosA}

\implies sinA\Bigg[\dfrac{1+sinA}{1-cosA}\:-\:\dfrac{1-sinA}{1+cosA}\Bigg]

\implies sinA\Bigg[\dfrac{(1+sinA)(1+cosA)}{1-cos^{2}A}\:-\:\dfrac{(1-sinA)(1-cosA)}{1-cos^{2}A}\Bigg]

\implies sinA\Bigg[\dfrac{(1+sinA)(1+cosA)\: - \: (1-sinA)(1-cosA)}{1-cos^{2}A}\Bigg]

\implies sinA\Bigg[\dfrac{(1+sinA)(1+cosA)\: - \: (1-sinA)(1-cosA)}{sin^{2}A}\Bigg]

\implies \dfrac{(1+sinA)(1+cosA)\: - \: (1-sinA)(1-cosA)}{sinA}

\implies \dfrac{1+cosA+sinA+sinAcosA-(1-cosA-sinA+sinAcosA)}{sinA}

\implies \dfrac{1+cosA+sinA+sinAcosA-1+cosA+sinA-sinAcosA}{sinA}

\implies \dfrac{2cosA\:+\:2sinA}{sinA}

\implies 2\Bigg[\dfrac{cosA\:+\:sinA}{sinA}\Bigg]

\implies 2\Bigg[\dfrac{cosA}{sinA} \:+\:{sinA}{sinA}\Bigg]

RHS

\implies 2[CotA \:+\:1]

LHS = RHS

Hence Proved

Attachments:
Answered by simatulsyan1980
0

Step-by-step explanation:

please add me in brainlist

Attachments:
Similar questions