Math, asked by pri727, 1 year ago

prove the following identity: sec^2A/tan^2A+cosec^2A/cot^2A=sec^2A.cosec^2A​

Answers

Answered by nain31
3

Given,

\large \boxed{\mathsf{\dfrac{sec^{2}A }{tan^{2}A} +\dfrac{cosec^{2}A }{cot^{2}A}=sec^{2}A.cosec^{2}A}}

 \mathsf{On\: taking\: left\: hand \:side,}

\mathsf{\dfrac{sec^{2}A}{tan^{2}A} +\dfrac{cosec^{2}A}{cot^{2}A}}

Since,

 \large \boxed{\mathsf{tan^{2}A =\dfrac{sin^{2}A}{cos^{2}A}}}

 \large \boxed{\mathsf{cot^{2}A =\dfrac{cos^{2}A}{sin^{2}A}}</p><p>}

So,

\mathsf{\dfrac{sec^{2}A }{\dfrac{sin^{2}A}{cos^{2}A} } +\dfrac{cosec^{2}A }{\dfrac{cos^{2}A}{sin^{2}A} }}

\mathsf{\dfrac{sec^{2}A \times cos^{2}A }{sin^{2}A} +\dfrac{cosec^{2}A \times sin^{2}A}{cos^{2}A}}}

Since,

\mathsf{\large \boxed{\mathsf{sec^{2}A =\dfrac{1}{cos^{2}A}}}\\ \\\large \boxed{\mathsf{ {cosec^{2}A =\dfrac{1}{sin^{2}A}}}}}

So,

\mathsf{\dfrac{\dfrac{1}{cos^{2}A}\timescos^{2}A }{sin^{2}A}+\dfrac{ \dfrac{1}{ sin^{2}A} \times sin^{2}A}{cos^{2}A}}}

On solving we get,

\mathsf{\dfrac{1}{sin^{2}A} +\dfrac{1}{cos^{2}A} }

\mathsf{\dfrac{cos^{2}A + sin^{2}A}{sin^{2}A.cos^{2}A} }

since,\\\\\large \boxed{\mathsf{cos^{2}A+sin^{2}A =1}}

\mathsf{\dfrac{1}{sin^{2}A.cos^{2}A} }

On taking seperately,

\mathsf{\dfrac{1}{sin^{2}A}.\dfrac{1}{cos^{2}A} }

Since,

\mathsf{\large \boxed{\mathsf{sec^{2}A =\dfrac{1}{cos^{2}A}}}\\ \\\large \boxed{\mathsf{ {cosec^{2}A =\dfrac{1}{sin^{2}A}}}}}

\mathsf{=sec^{2}A.cosec^{2}A}

L.H.S = R.H.S

HENCE PROVED

Similar questions