Prove the following identity:sin³ θ+cos³ θ/sin θ+cos θ= 1 – sin θ.cos θ
pls guys ans this question
Answers
Answered by
5
Answer:
LHS = sin^3 A + cos^3 A / sin A + cos A
We know that, a^3+b^3 = (a+b)(a^2+b^2-ab)
Using this formula,
LHS = (sinA+cosA)(sin^2 A + cos^2 A - sin A cos A) / sin A + cos A
= sin^2 A + cos^2 A - sin A cos A
Now we know the identity,
sin^2 A + cos^2 A = 1
So,
LHS = 1- sin A cos A
= RHS
Hence,
LHS = RHS
Hence, proved.
Similar questions