Math, asked by jishnu4142, 11 months ago

prove the following identity : tan A + tan B whole divided by cot A + cot B = tan A . tan B​

Answers

Answered by ak2820143
2

Answer:

(tanA+ tan B)/cotA+.cotB

Step-by-step explanation:

(tanA+tanB)/(1/tanA+1/tanB

(tanA+tanB)/(tanA+tanB/tanA .tanB

(tanA+tanB)/(tanA .tanB /tanA +tanB

tanA .tan B

Answered by Anonymous
129

\large\huge\red{\bold{\boxed{\boxed{\underline{\mathfrak{\green{\sf{QUESTION:-}}}}}}}}

  • prove the following identity : \large{\mathrm{\large{\:\frac{(\tan A +\tan B)}{(\cot A + \cot B)}}\: =\: \tan A \times\tan B}}

\large\huge{\boxed{\boxed{\underline{\mathfrak{\green{\sf{PROVE:-}}}}}}}

Take L.H.S.

\large{\hookrightarrow{\mathrm{\:\frac{(\tan A +\tan B)}{(\cot A + \cot B)}}}}

\large{\hookrightarrow{\mathrm{\:\frac{\frac{\sin A}{\cos A}\:+\frac{\sin B}{\cos B}}{\frac{\cos A}{\sin A}\:+\frac{\cos B}{\sin B}}}}}

\large{\hookrightarrow{\mathrm{\:\frac{\frac{\cancel{(\sin A \cos B)+(\sin B \cos A)}}{(\cos A \cos B)}}{\frac{\cancel{(\sin A \cos B)+(\sin B \cos A)}}{(\sin A \sin B)}}}}}

\large{\hookrightarrow{\mathrm{\:\frac{(\sin A \sin B)}{(\cos A \cos B)}}}}

\large{\hookrightarrow{\mathrm{\:\frac{\sin A}{\cos A}\times\frac{\sin B}{\cos B}}}}

\bold{\pink{\boxed{\boxed{\mathrm{(\:\tan A \tan B)}}}}}

Proved

\large{\underline{\underline{\mathfrak{\green{\sf{USING\:FORMULA:-}}}}}}.

\red{\mathrm{\tan X \:=\frac{\sin X}{\cos X}}}

\red{\mathrm{\cot X\:=\frac{\cos X}{\sin X}}}

____________________

Similar questions