Math, asked by Anonymous1Unknown, 10 months ago

Prove the following identity :tan theta-cot theta/sin theta*cos theta = tan 2θ –cot 2θ

Answers

Answered by VishnuPriya2801
8

Answer:-

To Prove:

 \sf \ \frac{ \tan \theta -  \cot \theta }{ \sin \theta. \cos \theta}  =  { \tan }^{2}  \theta -  { \cot }^{2}  \theta \\  \\

tan² theta - Cot² theta can be written as (tan theta + cot theta)(tan theta - cot theta) since (a² - b² ) = (a + b)(a - b).

 \sf \implies \:  \frac{ (\tan \theta -  \cot \theta)}{ \sin \theta. \cos \theta}  = ( \tan \theta \:  +  \cot \theta)( \tan \theta -  \cot \theta)  \\  \\\sf \implies \:  \frac{1}{ \sin \theta \cos \theta}  =  \tan \theta +  \cot \theta \\  \\

Using tan theta = Sin theta/Cos theta and Cot theta = Cos theta/Sin theta in RHS we get,

\sf \implies \:  \frac{1}{ \sin \theta. \cos \theta}  =  \frac{ \sin \theta}{ \cos \theta}   +  \frac{ \cos \theta}{ \sin \theta }  \\  \\  \sf \implies \:  \frac{1}{ \sin \theta. \cos \theta}  =   \frac{ { \sin }^{2}  \theta +  { \cos}^{2} \theta }{ \sin \theta. \cos \theta}  \\  \\

Using Sin² theta + Cos² theta = 1 in RHS we get,

 \sf \implies \:  \frac{1}{ \sin \theta. \cos \theta}  =  \frac{1}{ \sin \theta . \cos \theta  }  \\  \\  \implies \sf \large \: LHS = RHS

Hence, Proved.

Similar questions