Math, asked by Proineverything, 5 months ago

prove the following identity
 \frac{ \sin \theta}{1 -  \cos \theta}  +  \frac{ \tan \theta}{1 +  \cos \theta} =  \sec \theta \cosec \theta +  \cot \theta

Answers

Answered by vanshikavikal448
134

 \huge \bold  {\fbox{ \underline{ \underline \pink{required \: answer}}}}

we have,

 \bold{ \tt  LHS  = \frac{ \sin \theta}{1 -  \cos \theta} \:   +  \:  \frac{ \tan \theta}{ 1 +  \cos \theta} }  \\   \\  \bold{ \tt and \:  \:  \:RHS =  \sec \theta  \cosec \theta +  \cot \theta }

Solve LHS;

\bold{ \tt →LHS =  \frac{ \sin \theta(1 +  \cos \theta)}{(1 +  \cos \theta)(1 -  \cos \theta)}  +    \frac{ \tan \theta(1 -  \cos \theta)}{(1 +  \cos \theta)(1 -  \cos \theta)} } \\  \\  \bold{ \tt →LHS =  \frac{ \sin \theta(1 +  \cos \theta)}{1  -  \cos^{2} \theta}  +   \frac{ \tan \theta(1 -  \cos \theta)}{1 -  \cos^{2} \theta }  } \\  \\  \bold{ \tt→LHS = \frac{ \sin \theta(1 +  \cos \theta)}{ \sin^{2}  \theta}  +  \frac{ \tan \theta(1 -  \cos \theta)}{ { \sin}^{2} \theta }  } \\  \\  \bold{ \tt →LHS =  \frac{ \sin \theta(1 +  \cos \theta)}{  { \sin}^{2} \theta }  +  \frac{ \sin \theta(1 -  \cos \theta)}{ \cos \theta \sin^{2} \theta} } \\  \\  \bold{ \tt →LHS =  \frac{1 +  \cos \theta}{ \sin \theta} +  \frac{1 -  \cos \theta}{ \cos \theta \sin \theta}  } \\  \\  \bold{ \tt →LHS =  \frac{1}{ \sin \theta}  +  \frac{ \cos \theta}{ \sin \theta} +  \frac{1}{ \cos \theta \sin \theta}  -  \frac{ \cos \theta}{ \cos \theta \sin \theta}  } \\  \\  \bold{ \tt →LHS =  \frac{1}{ \sin \theta} +  \frac{ \cos \theta}{ \sin \theta}  +  \frac{1}{ \cos \theta \sin \theta} -  \frac{1}{ \sin \theta}   } \\  \\  \bold{ \tt →LHS =  \cot \theta +  \sec \theta \cosec \theta} \\  \\  \bold{ \implies \:LHS =  \sec \theta \cosec \theta +  \cot \theta = RHS }

so, LHS = RHS

 \bold{ \underline{ \underline \orange{hence,  \: proved}}}

Similar questions