Math, asked by aaryagulhane, 10 months ago

prove the following....

please answer guys....​

Attachments:

Answers

Answered by soardraspi
1

Step-by-step explanation:

LHS = \frac{1}{sec\alpha + tan\alpha } - \frac{1}{cos\alpha }

= \frac{1}{\frac{1}{cos\theta } + \frac{sin\theta }{cos\theta } } - \frac{1}{cos\theta }

= \frac{cos\theta }{1 + sin\theta } - \frac{1}{cos\theta }

= \frac{cos\theta (1 - sin\theta)}{(1 + sin\theta)(1 - sin\theta)} - \frac{1}{cos\theta}

= \frac{cos\theta (1 - sin\theta)}{1 - sin^{2}\theta  } - \frac{1}{cos\theta}

= \frac{cos\theta (1 - sin\theta)}{cos^{2}\theta  } - \frac{1}{cos\theta}

= \frac{cos\theta (1 - sin\theta) - cos\theta}{cos^{2}\theta }

= \frac{- sin\theta}{cos\theta} = (- tan\theta)

RHS = \frac{1}{cos\theta } - \frac{1}{sec\theta - tan\theta }

= \frac{1}{cos\theta} - \frac{cos\theta}{1 - sin\theta }

= \frac{cos\theta - cos\theta(1 + sin\theta)}{cos^{2}\theta }

= \frac{- sin\theta}{cos\theta} = (- tan\theta)

∴ LHS = RHS

Hence Proved

If you liked my answer and feel satisfied, please mark as Brainliest. For any queries, you may inbox me :)

Similar questions