prove the following question
Attachments:
Answers
Answered by
0
Answer:
I hope it help u
Step-by-step explanation:
usiging identity
Attachments:
Answered by
0
√(secA-1/secA+1)+√(secA+1/secA-1)
LHS=√{(secA-1)(secA-1)/(secA+1)(secA-1)}+√{(secA+1)(secA+1)/(secA-1)(secA+1)}
=√{(secA-1)²/(sec²A-1)}+√{(secA+1)²/(sec²A-1)}
=√(secA-1)²/tan²A+√(secA+1)²/tan²A
=(secA-1)/tanA+(secA+1)/tanA
=secA/tanA-1/tanA+secA/tanA+1/tanA
=(1/cosA)/(sinA/cosA)-cotA+(1/cosA)/(sinA/cosA)+cotA
=1/sinA+1/sinA
=2/sinA
=2cosecA (RHS)
Hence proved.
Hope it helps...
please make brainliest...!
Similar questions