Math, asked by mjain0608, 2 days ago

Prove the following question​

Attachments:

Answers

Answered by SShahana
0

Answer:

57788+47885+379-6799+3589

Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

Prove the following :

 \sf \:  {cos}^{2}x {(3 - 4 {cos}^{2} x)}^{2}  +  {sin}^{2}x {(3 - 4 {sin}^{2} x)}^{2}  = 1

\large\underline{\sf{Solution-}}

Consider LHS

  \red{\rm :\longmapsto\:\sf \:  {cos}^{2}x {(3 - 4 {cos}^{2} x)}^{2}  +  {sin}^{2}x {(3 - 4 {sin}^{2} x)}^{2}}

Now, Consider

 \red{{\rm :\longmapsto\:\sf \:  {cos}^{2}x {(3 - 4 {cos}^{2} x)}^{2} }}

We know,

\boxed{ \bf{ \:  {x}^{m} \times  {y}^{m}  =  {(xy)}^{m} }}

So, using this identity, we get

\sf \:  =  \:  { \bigg(cosx(3 - 4 {cos}^{2} x) \bigg)}^{2}

\sf \:  =  \:  { \bigg(3cosx - 4 {cos}^{3} x \bigg)}^{2}

\sf \:  =  \:  { \bigg( - (4 {cos}^{3} x - 3cosx) \bigg)}^{2}

We know that,

\boxed{ \bf{ \: cos3x =  {4cos}^{3}x - 3cosx}}

So, using this identity, we get

\sf \:  =  \:  {( - cos3x)}^{2}

\sf\:  =  \:  {cos}^{2}3x

Hence,

{\rm :\longmapsto\:\bf \:  {cos}^{2}x {(3 - 4 {cos}^{2} x)}^{2} } =   \bf{cos}^{2}3x

Now, Consider

  \red{\rm :\longmapsto\:\sf \: {sin}^{2}x {(3 - 4 {sin}^{2} x)}^{2}}

We know,

\boxed{ \bf{ \:  {x}^{m} \times  {y}^{m}  =  {(xy)}^{m} }}

So, using this, we get

\sf \:  =  \:  { \bigg(sinx(3 - 4 {sin}^{2} x) \bigg)}^{2}

\sf \:  =  \:  { \bigg(3sinx - 4 {sin}^{3} x \bigg)}^{2}

We know,

\boxed{ \bf{ \: sin3x = 3sinx -  {4sin}^{3}x}}

So, using this, we get

\sf \:  =  \:  {(sin3x)}^{2}

\sf \:  =  \:  {sin}^{2}3x

Hence,

{\rm :\longmapsto\:\bf \:  {sin}^{2}x {(3 - 4 {sin}^{2} x)}^{2} } =   \bf{sin}^{2}3x

Now, Consider, LHS

  \red{\rm :\longmapsto\:\sf \:  {cos}^{2}x {(3 - 4 {cos}^{2} x)}^{2}  +  {sin}^{2}x {(3 - 4 {sin}^{2} x)}^{2}}

\rm \:  =  \:  {cos}^{2}3x +  {sin}^{2}3x

\rm \:  =  \: 1

Hence,

  \red{\bf :\longmapsto\:\sf \:  {cos}^{2}x {(3 - 4 {cos}^{2} x)}^{2}  +  {sin}^{2}x {(3 - 4 {sin}^{2} x)}^{2} = 1}

Proved

Additional Information :-

\boxed{ \bf{ \: sin2x = 2sinx \: cosx}}

\boxed{ \bf{ \: cos2x = 1 -  {2sin}^{2}x}}

\boxed{ \bf{ \: cos2x = {2cos}^{2}x - 1}}

\boxed{ \bf{ \: cos2x = {cos}^{2}x -  {sin}^{2} x}}

\boxed{ \bf{ \: 1 + cos2x =  {2cos}^{2}x}}

\boxed{ \bf{ \: 1  -  cos2x =  {2sin}^{2}x}}

Similar questions