Math, asked by amber123, 1 year ago

prove the following question:-


 \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos8 \ \alpha  } } }  = 2cos \alpha

Answers

Answered by Anonymous
9

ÊLLØ'.....!!

Given:-

 \sqrt{2 + \sqrt{2 + \sqrt{2 + 2cos8 \ \alpha } } } = 2cos \alpha

lhs =  \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos8 \alpha } } }

 =  \sqrt{2 +  \sqrt{2 +  \sqrt{2(1 + cos8 \alpha )} } }

  = \sqrt{2 +  \sqrt{2 +  \sqrt{2 \times 2 {cos}^{2} 4 \alpha } } }

 =  \sqrt{2 +  \sqrt{2 + 2cos4 \alpha } }

 =  \sqrt{2 +  \sqrt{2(1 + cos4 \alpha )} }

  = \sqrt{2 +  \sqrt{2 \times 2 {cos}^{2} \alpha  } }

 =  \sqrt{2 + 2cos2 \alpha }

 =  \sqrt{2(1 + cos2 \alpha )}

 =  \sqrt{2 \times 2 {cos}^{2} \alpha  }

 = 2cos \alpha

 = rhs

THÅÑKẞ.....!!

Answered by Anonymous
0

Step-by-step explanation:

Given:

\sqrt{2 + \sqrt{2 + \sqrt{2 + 2cos8 \ \alpha } } } = 2cos \alpha

LHS = \sqrt{2 + \sqrt{2 + \sqrt{2 + 2cos8 \alpha } } }

= \sqrt{2 + \sqrt{2 + \sqrt{2(1 + cos8 \alpha )} } }

 = \sqrt{2 + \sqrt{2 + \sqrt{2 \times 2 {cos}^{2} 4 \alpha } } }

= \sqrt{2 + \sqrt{2 + 2cos4 \alpha } }

= \sqrt{2 + \sqrt{2(1 + cos4 \alpha )} }

= \sqrt{2 + \sqrt{2 \times 2 {cos}^{2} \alpha } }

= \sqrt{2 + 2cos2 \alpha }

= \sqrt{2(1 + cos2 \alpha )}

= \sqrt{2 \times 2 {cos}^{2} \alpha }

=2cosα

= RHS

Similar questions