Math, asked by papafairy143, 17 days ago

Prove the following relation ship

 \sf \:  \sqrt{2 +  \sqrt{2 +  \sqrt{2 +  -  -  -  +  \sqrt{2} } } }  = 2cos( \frac{\pi}{ {2}^{n + 1} } ) \\  \\  \sf \: where \: root \: repeat \: n \: times \: and \: n \: is \: natural \: number

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \sqrt{2 + \sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } = 2cos\bigg( \dfrac{\pi}{ {2}^{n + 1} } \bigg) \\

To prove this result, we use Principal of Mathematical Induction.

Let assume that

\rm \:P(n) : \sqrt{2 + \sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } = 2cos\bigg( \dfrac{\pi}{ {2}^{n + 1} } \bigg) \\

Step :- 1 For n = 1

\rm \:P(1) :  \sqrt{2}  = 2cos\bigg( \dfrac{\pi}{ {2}^{1 + 1} } \bigg) \\

\rm \:P(1) :  \sqrt{2}  = 2cos\bigg( \dfrac{\pi}{ {2}^{2} } \bigg) \\

\rm \:P(1) :  \sqrt{2}  = 2cos\bigg( \dfrac{\pi}{4} \bigg) \\

\rm \:P(1) :  \sqrt{2}  = 2 \times  \frac{1}{ \sqrt{2} }  \\

\rm \:P(1) :  \sqrt{2}  = \sqrt{2}   \\

\rm\implies \:P(n)  \: is \: true \: for \: n = 1 \\

Step :- 2 Let assume that P(n) is true for n = k, where k is some natural number.

So,

\rm \:P(k) : \sqrt{2 + \sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } = 2cos\bigg( \dfrac{\pi}{ {2}^{k + 1} } \bigg) \\

Step :- 3 Now, we have to prove that P(n) is true for n = k + 1.

It means, we have to prove that

\rm \:P(k + 1) :  \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } }= 2cos\bigg( \dfrac{\pi}{ {2}^{k + 2} } \bigg) \\  \:  \:  \:  \: (k + 1) \: terms

Now, Consider LHS

\rm \: \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } }  \\  \:  \:  \:  \: (k + 1) \: terms

\rm \:  =  \: \sqrt{2 + \underbrace{\sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } }  \\  \:  \:  \:  \: k\: terms

So, on substituting the value from step 2, we get

\rm \:  =  \:  \sqrt{2 + 2cos\bigg( \dfrac{\pi}{ {2}^{k + 1} } \bigg)}

\rm \:  =  \:  \sqrt{2 \bigg[1+ cos\bigg( \dfrac{\pi}{ {2}^{k + 1} } \bigg)\bigg]}  \\

We know,

\boxed{ \rm{ \:1 + cos2x =  {2cos}^{2}x \: }} \\

So, using this result, we get

\rm \:  =  \:  \sqrt{2 \times 2cos^{2} \bigg( \dfrac{1}{2} \times  \dfrac{\pi}{ {2}^{k + 1} } \bigg)}

\rm \:  =  \:  \sqrt{4cos^{2} \bigg( \dfrac{\pi}{ {2}^{k + 1 + 1} } \bigg)}

\rm \:  =  \:  \sqrt{4cos^{2} \bigg( \dfrac{\pi}{ {2}^{k + 2} } \bigg)}

\rm \:  =  \: 2cos\bigg( \dfrac{\pi}{ {2}^{k + 2} } \bigg)

\rm\implies \:P(n)  \: is \: true \: for \: n = k + 1 \\

Hence, By Principal of Mathematical Induction,

\rm \:  \sqrt{2 + \sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } = 2cos\bigg( \dfrac{\pi}{ {2}^{n + 1} } \bigg) \\

Answered by talpadadilip417
12

Answer:

\sf \: \sqrt{2 + \sqrt{2 + \sqrt{2 + - - - + \sqrt{2} } } } = 2cos \bigg( \frac{\pi}{ {2}^{n + 1} }  \bigg) \\ \\  \sf \: where \: root \: repeat \: n \: times \: and \: n \: is \: natural \: number

 \\ \rule{300pt}{0.1pt}

Step-by-step explanation:

 \\  \tt\operatorname{Let} P(n)=\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\ldots+\sqrt{2}}}}=2 \cos \left(\frac{\pi}{2^{n+1}}\right)  \qquad \ldots(i)

For n=1 ,

 \text{L.H.S. of \( \tt (i)=\sqrt{2} \) and R.H.S. of \(  \tt(i)=2 \cos \left(\dfrac{\pi}{2^{2}}\right) \)}

 \\  \[ \begin{array}{l} \tt =2 \cos \left(\dfrac{\pi}{4}\right) \\ \\  \tt =2 \cdot \dfrac{1}{\sqrt{2}} \\ \\  =\sqrt{2} \end{array} \]

Therefore, P(1) is true. Assume it is true for n=k ,

 \\ \tt P(k) \underset{(k \: \text{ radical \: sign})}{=\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\ldots+\sqrt{2}}}}=2 \cos \left(\frac{\pi}{2^{k+1}}\right)  }

For n=k+1

 \begin{aligned} \tt P(k+1) & \tt \underset{ k + 1\text { radical sign }}{=\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\ldots+\sqrt{2}}}}} \\ \\   & \tt=\sqrt{\{2+P(k)\}} \\ \\  & \tt=\sqrt{2+2 \cos \left(\frac{\pi}{2^{k+1}}\right)} \text { (By assumption step) } \\ \\  & \tt=\sqrt{2\left(1+\cos \left(\frac{\pi}{2^{k+1}}\right)\right)} \\ \\  & \tt=\sqrt{2\left(1+2 \cos ^{2}\left(\frac{\pi}{2^{k+1}}\right)-1\right)} \\  \\ & \tt=\sqrt{4 \cos ^{2}\left(\frac{\pi}{2^{k+2}}\right)} \\  \\ & \tt=2 \cos \left(\frac{\pi}{2^{k+2}}\right) \end{aligned}

This shows that the result is true for n=k+1. Hence by the principle of mathematical induction, the result is true for all n ∈ N .

Similar questions