Math, asked by 12ahujagitansh, 19 days ago

Prove the following result

log(1 + x) = x -  \frac{ {x}^{2} }{2} +  \frac{ {x}^{3} }{3} -  \frac{ {x}^{4} }{4} +  -  -  -  -

Answers

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Consider,

\rm \: f(x) = log(1 + x)

Let first evaluate the differential coefficient of f(x)

\rm \: f'(x) = \dfrac{1}{1 + x}

\rm \: f''(x)  \: = \:   - \:  \dfrac{1}{(1 + x)^{2} }

\rm \: f'''(x)  \: = \:   -  \:  \dfrac{( - 2)}{(1 + x)^{3} }  = \dfrac{2}{ {(1 + x)}^{3} }

\rm \: f''''(x)  \: = \:  -  \:   \dfrac{6}{(1 + x)^{4} }

.

.

.

.

Now, Let's evaluate the value of differential coefficients at x = 0

\rm \: f(0) = log(1 + 0) = log1 = 0

\rm \: f'(0) = \dfrac{1}{1 + 0}  = 1

\rm \: f''(0)  \: = \:   - \:  \dfrac{1}{(1 + 0)^{2} }  \:  =  \:  -  \: 1

\rm \: f'''(0)  \: = \: \dfrac{2}{ {(1 + 0)}^{3} }  = 2

\rm \: f''''(0)  \: = \:  -  \:   \dfrac{6}{(1 + 0)^{4} } =  - 6

.

.

.

.

.

So, By Mc Lauren's Series, we have

\rm \: f(x) = f(0) + \dfrac{x}{1!}f'(0) +\dfrac{ {x}^{2} }{2!}f''(0) + \dfrac{ {x}^{3} }{1!}f'''(0 + \dfrac{ {x}^{4} }{4!}f''''(0) +  -  -  -

So, on substituting the values, we get

\rm \: log(1 + x) = 0 + \dfrac{x}{1!} + \dfrac{ {x}^{2} }{2!}( - 1) + \dfrac{ {x}^{3} }{3!}( - 2) + \dfrac{ {x}^{4} }{4!}(6) +  -  -  -

\rm \: log(1 + x) = x - \dfrac{ {x}^{2} }{2} + \dfrac{ {x}^{3} }{3} - \dfrac{ {x}^{4} }{4}  +  -  -  -  \infty

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Result used

\boxed{\tt{  \:  \: \dfrac{d}{dx} \: logx \:  =  \:  \frac{1}{x}  \: }} \\

\boxed{\tt{  \:  \: \dfrac{d}{dx} \frac{1}{ {x}^{n} }  \:  =  \:  \frac{ -  \: n \:  \: }{ \:  \:  {x}^{n + 1}  \:  \:  \: }  \: }} \\

\boxed{\tt{  \:  \: log1 \:  =  \: 0 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}


amansharma264: Excellent
Answered by jaswasri2006
18

\color{lime}{\huge\pmb{\mathrm{ Pʀᴏvᴇ \: \: THᴀᴛ}}} \:  :

 \rm \log(1 + x) = x -  \frac{ {x}^{2} }{2}  +  \frac{ {x}^{3} }{3}  -  \frac{ {x}^{4} }{4}  +  -  -  -  +  \infty

\color{purple}\huge\pmb{\mathrm{ Pʀᴏᴏf}} \:  :

Refer the Given Attachments.

Attachments:
Similar questions