Math, asked by shreyas056, 10 months ago

Prove the following results; using truth table:
p↔q≡(p→q)∧(q→p)p↔q≡(p→q)∧(q→p)

plz answer fast​

Answers

Answered by MaheswariS
3

\textbf{To prove:}

\bf\,p{\iff}q\;\equiv\;(p{\implies}q)\wedge(q{\implies}p)

\textbf{Solution:}

\text{First we form the truth tables for both the statements}

\text{After that we compare the last columns whether they are identitical}

\begin{array}{|c|c|c|}\cline{1-3}\bf{p}&\bf{q}&\bf{p{\iff}q}\\\cline{1-3}T&T&T\\T&F&F\\F&T&F\\F&F&T\\\cline{1-3}\end{arrary}

\begin{array}{|c|c|c|c|c|}\cline{1-5}\bf{p}&\bf{q}&\bf{p{\implies}q}&\bf{q{\implies}p}&\bf(p{\implies}q)\wedge(q{\implies}p)\\\cline{1-5}T&T&T&T&T\\T&F&F&T&F\\F&T&T&F&F\\F&F&T&T&T\\\cline{1-5}\end{array}

\text{Comparing last columns of both the tables, they are identical}

\therefore\bf\,p{\iff}q\;\equiv\;(p{\implies}q)\wedge(q{\implies}p)

Find more:

P ↔ q ≡ (p ∧ q) ∨ (∼ p ∧ ∼ q)

https://brainly.in/question/16742907

Similar questions