Math, asked by vdpx3qci, 9 months ago

Prove the following: sec^(4)A-1=2tan^(2)A+tan^(4)A

Answers

Answered by amansharma264
3

  \large \green{ \underline{question}}  \\  \\  \large \implies{ \sec {}^{4} ( \: A)  - 1 = 2 \:  \tan {}^{2} ( \:A )  +  \:  \tan {}^{4} ( \: A) } \\  \\  \large \implies{ \underline{to \: prove \:  \: LHS \:   =  \: RHS \: }} \\  \\  \large \implies{ \underline{from \:  \: LHS \:  \: and \:  \: RHS}} \\  \\  \large \implies{ \sec {}^{4} ( \:A ) -  \tan {}^{4} ( \:A )   = 1 \:  +  \: 2 \tan {}^{2} ( \:A ) } \\  \\  \large \implies{ \underline{LHS}} \\  \\  \large \implies{ \sec {}^{4} ( \:A)  -  \tan {}^{4} ( \: A) } \\  \\  \large \implies{( \sec {}^{2} ( \:A) ) {}^{2}  - ( \tan {}^{2} ( \:A) ) {}^{2} } \\  \\  \large \implies{it \:  \: is \:  \: in \:  \: form \: of } \\  \\     \large \implies{{a}^{2} -  {b}^{2}  = (a + b)(a - b) } \\  \\  \large \implies{( \sec {}^{2} ( \:A )  +  \:  \tan {}^{2} ( \:A) ) \:  \: ( \sec {}^{2} ( \:A ) -  \:  \tan {}^{2} ( \: A) {}^{2}   } \\  \\ \large \implies{ \sec {}^{2} ( \: A)  +  \tan {}^{2} (  \: A )  \times  \: 1} \\  \\  \large \implies{ \tan {}^{2} ( \:A ) \:  +  \: 1  + \:  \tan {}^{2} ( \:A)  } \\  \\  \large \implies{ \boxed{1 \:  +  \: 2 \tan {}^{2} ( \: A)  =  \: RHS}}

Formula used

1)=> ( a - b) ( a + b) = a^2 - b^2

2)=> sec^2A - tan^2A = 1

Similar questions