prove the following sec^4 a (1-sin^4 a) -2 tan^2 a =1
Answers
Answered by
7
LHS = sec⁴a (1 - sin⁴a) - 2tan²a
= sec⁴a(1 - sin²a)(1 + sin²a) - 2tan²a
= sec⁴a cos²a (1 + sin²a) - 2tan²a
= sec²a/cos²a × cos²a(1 + sin²a) - 2tan²a [ we know, secA = 1/cosA]
= sec²a (1 + 1 - cos²a) - 2tan²a [ we know , sin²A = 1 - cos²A ]
= sec²a(2 - cos²a) - 2tan²a
= 2sec²a - sec²a.cos²a - 2tan²a
= 2sec²a - 2tan²a - cos²a/cos²a
= 2(sec²a - tan²a) - 1
we know, sec²A - tan²A = 1 so, sec²a - tan²a = 1
= 2 - 1 = 1 = RHS
= sec⁴a(1 - sin²a)(1 + sin²a) - 2tan²a
= sec⁴a cos²a (1 + sin²a) - 2tan²a
= sec²a/cos²a × cos²a(1 + sin²a) - 2tan²a [ we know, secA = 1/cosA]
= sec²a (1 + 1 - cos²a) - 2tan²a [ we know , sin²A = 1 - cos²A ]
= sec²a(2 - cos²a) - 2tan²a
= 2sec²a - sec²a.cos²a - 2tan²a
= 2sec²a - 2tan²a - cos²a/cos²a
= 2(sec²a - tan²a) - 1
we know, sec²A - tan²A = 1 so, sec²a - tan²a = 1
= 2 - 1 = 1 = RHS
Answered by
2
We need to prove, sec⁴a (1 - sin⁴a) - 2tan²a = 1
Let us take LHS,
sec⁴a (1 - sin⁴a) - 2tan²a
We know, (1 - sin⁴a) = (1 - sin²a)(1 + sin²a)
Putting above in the given equation, we get
= sec⁴a(1 - sin²a)(1 + sin²a) - 2tan²a
= sec⁴a cos²a (1 + sin²a) - 2tan²a { As we know, (1 - sin²a) = cos²a }
= sec²a/cos²a × cos²a(1 + sin²a) - 2tan²a [ As we know, secA = 1/cosA]
= sec²a (1 + 1 - cos²a) - 2tan²a [ we know , sin²A = 1 - cos²A ]
= sec²a(2 - cos²a) - 2tan²a
= 2sec²a - sec²a.cos²a - 2tan²a
= 2sec²a - 2tan²a - cos²a/cos²a
= 2(sec²a - tan²a) - 1
As we know, sec²A - tan²A = 1
so, sec²a - tan²a = 1
This implies
= 2 - 1 = 1 = RHS
Hence,
sec^4 a (1-sin^4 a) -2 tan^2 a =1
Similar questions
Computer Science,
7 months ago
Computer Science,
7 months ago
English,
1 year ago
Math,
1 year ago
History,
1 year ago