Math, asked by iugg5ksx, 8 months ago

Prove the following: (sec^(6)A+tan^(6)A)/(sec^(2)A+tan^(2)A) = 1+sec^(2)A*tan^(2)A

Answers

Answered by khushi02022010
11

Step-by-step explanation:

Recall that 1 + tan2x = sec2x and A3-B3 = (A-B)(A2+AB+B2)

sec6x - tan6x = (sec2x)3 - (tan2x)3

= (sec2x - tan2x)(sec4x + sec2xtan2x + tan4x)

= (1+tan2x-tan2x))[sec4x+sec2xtan2x+(sec2x-1)tan2x]

= sec4x - tan2x + 2sec2xtan2x

= sec2x(1+tan2x) - tan2x + 2sec2xtan2x

= sec2x - tan2x + sec2xtan2x + 2sec2xtan2x

= 1 + 3sec2xtan2x

Answered by simranroy27
2

Answer:

Hey,mate in this pic have your answer....

Sorry mate I am busy So I will give u answer by pic....

.

.

.

Have a nice day mate..❣️

Attachments:
Similar questions