Prove the following: (sec^(6)A+tan^(6)A)/(sec^(2)A+tan^(2)A) = 1+sec^(2)A*tan^(2)A
Answers
Answered by
1
Answer:
Step-by-step explanation:
Sec⁶A + Tan⁶A / Sec²A + Tan²A
= (Sec²A)³ + (Tan²A)³ / Sec²A + Tan²A
The Numerator is of form a³ + b³, i.e. a³ + b³ = (a+b) (a² - ab + b²)
= (Sec²A + Tan²A)( Sec⁴A + Tan⁴A - Sec²ATan²A) / Sec²A + Tan²A
= Sec⁴A + Tan⁴A - Sec²ATan²A
= Sec²A (Sec²A - Tan²A) + Tan⁴A
= Sec²A + Tan⁴A (∵Sec²A - Tan²A = 1)
= 1 + Tan²A + Tan⁴A (∵Sec²A = 1 + Tan²A)
= 1 + Tan²A ( Tan²A + 1)
= 1 + Tan²A Sec²A.
= R.H.S
Hence proved.
Similar questions