Math, asked by sonia2704, 1 month ago

prove the following
sin⁶A + cos⁶A = 1 - 3sin²A + 3sin⁴A​

Answers

Answered by mathdude500
3

\large\underline{\bf{Solution-}}

Consider,

\rm :\longmapsto\: {sin}^{6} A +  {cos}^{6} A

\:  \: \rm  =  \:  \:  {\bigg( {sin}^{2}A \bigg) }^{3}  +  {\bigg( {cos}^{2}A\bigg) }^{3}

\: \:\rm=\:\: {\bigg({sin}^{2}A +  {cos}^{2}A\bigg) }^{3} -3{sin}^{2}A {cos}^{2}A({sin}^{2}A+{cos}^{2}A)

 \:  \:  \:  \:  \: \red{ \boxed{ \because \bf \:  {x}^{3} +  {y}^{3} = {(x + y)}^{3} - 3xy(x + y)}}

\:  \: \rm  =  \:  \:  {(1)}^{3}  - 3  {sin}^{2}A {cos}^{2}A (1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \because \bf \:  {sin}^{2}x +  {cos}^{2}x = 1}}

\:  \: \rm  =  \:  \: 1 - 3 {sin}^{2}A {cos}^{2}A

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by muskanshi536
1

Step-by-step explanation:

\large\underline{\bf{Solution-}}

Consider,

\rm :\longmapsto\: {sin}^{6} A +  {cos}^{6} A

\:  \: \rm  =  \:  \:  {\bigg( {sin}^{2}A \bigg) }^{3}  +  {\bigg( {cos}^{2}A\bigg) }^{3}

\: \:\rm=\:\: {\bigg({sin}^{2}A +  {cos}^{2}A\bigg) }^{3} -3{sin}^{2}A {cos}^{2}A({sin}^{2}A+{cos}^{2}A)

 \:  \:  \:  \:  \: \red{ \boxed{ \because \bf \:  {x}^{3} +  {y}^{3} = {(x + y)}^{3} - 3xy(x + y)}}

\:  \: \rm  =  \:  \:  {(1)}^{3}  - 3  {sin}^{2}A {cos}^{2}A (1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \because \bf \:  {sin}^{2}x +  {cos}^{2}x = 1}}

\:  \: \rm  =  \:  \: 1 - 3 {sin}^{2}A {cos}^{2}A

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions