Math, asked by papafairy143, 1 day ago

Prove the following statement

{tan}^{ - 1}  \frac{1}{1 + 1 +  {1}^{2} } + {tan}^{ - 1}  \frac{1}{1 + 2 +  {2}^{2} } + ... + {tan}^{ - 1}  \frac{1}{1 + n +  {n}^{2}} =  {tan}^{ - 1} (n + 1) -  \frac{\pi}{4}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: {tan}^{ - 1} \dfrac{1}{1 + 1 + {1}^{2} } + {tan}^{ - 1} \dfrac{1}{1 + 2 + {2}^{2} } + ... + {tan}^{ - 1} \dfrac{1}{1 + n + {n}^{2}} \\

can be rewritten as

\rm \: =  {tan}^{ - 1} \dfrac{1}{1 + 2} + {tan}^{ - 1} \dfrac{1}{1 + 6} + ... + {tan}^{ - 1} \dfrac{1}{1 + n(n + 1)} \\

\rm \: =  {tan}^{ - 1} \dfrac{1}{1 + 2.1} + {tan}^{ - 1} \dfrac{1}{1 + 3.2} + ... + {tan}^{ - 1} \dfrac{1}{1 + n(n + 1)} \\

\rm \: =  {tan}^{ - 1} \dfrac{2 - 1}{1 + 2.1} + {tan}^{ - 1} \dfrac{3 - 2}{1 + 3.2} + ... + {tan}^{ - 1} \dfrac{n + 1 - n}{1 + n(n + 1)} \\

We know,

\boxed{ \rm{ \: {tan}^{ - 1} \frac{x - y}{1 + xy}  = {tan}^{ - 1}x - {tan}^{ - 1}y \: }} \\

So, using this result, we get

\rm \:  = ({tan}^{ - 1}2 - {tan}^{ - 1}1) + ({tan}^{ - 1}3 - {tan}^{ - 1}2) +  \cdots \:  + [{tan}^{ - 1}(n + 1) - {tan}^{ - 1}n] \\

\rm \:  =  \: {tan}^{ - 1}(n + 1) - {tan}^{ - 1}1 \\

\rm \:  =  \: {tan}^{ - 1}(n + 1) - \dfrac{\pi}{4} \\

Hence, Proved

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:{tan}^{ - 1}x + {tan}^{ - 1}y = {tan}^{ - 1} \frac{x + y}{1 - xy} \: provided \: that \: xy \leqslant 1  \: }}

\boxed{ \rm{ \:{tan}^{ - 1}x + {tan}^{ - 1}y = \pi + {tan}^{ - 1} \frac{x + y}{1 - xy} \: provided \: that \: xy  > 1 1  \: }}

\boxed{ \rm{ \:2{tan}^{ - 1}x = {tan}^{ - 1} \frac{2x}{1 -  {x}^{2} } \: }} \\

\boxed{ \rm{ \:2{tan}^{ - 1}x = {sin}^{ - 1} \frac{2x}{1 + {x}^{2} } \: }} \\

\boxed{ \rm{ \:2{tan}^{ - 1}x = {cos}^{ - 1} \frac{1 -  {x}^{2} }{1 + {x}^{2} } \: }} \\

\boxed{ \rm{ \:{sin}^{ - 1}x + {sin}^{ - 1}y = {sin}^{ - 1}[x \sqrt{1 -  {y}^{2} } + y \sqrt{1 -  {x}^{2} } \: }} \\

\boxed{ \rm{ \:{sin}^{ - 1}x - {sin}^{ - 1}y = {sin}^{ - 1}[x \sqrt{1 -  {y}^{2} } -  y \sqrt{1-{x}^{2} }\:}} \\

Similar questions