Math, asked by priyankamogal004, 11 months ago

Prove the following statement when two Triangles are similar the ratio of areas of those Triangles is equal to the ratio of squares of their corresponding sides​

Answers

Answered by princeverma2339
15

Step-by-step explanation:

Step 1:

Given Data: Δ ABC ~ Δ PQR

To Prove: (ΔABC) / (ΔPQR) =

Step 2:

Draw AM ⊥ BC, PN ⊥ QR

(ΔABC) / (ΔPQR) = (½ × BC × AM) / (½ × QR × PN)

= BC/QR × AM/PN........................................... [I]

In Δ ABM and Δ PQN,

Step 3:

∠B = ∠Q (Δ ABC ~ Δ PQR)

∠M = ∠N (each 90°)

Step 4:

So, Δ ABM ~ Δ PQN  

AM/PN = AB/PQ ... ………………. [ii]

AB/PQ = BC/QR = CA/RP (Δ ABC ~ Δ PQR)..................... [iii]

Step 5:

Therefore Equation (i)

(ΔABC) / (ΔPQR) = BC/QR × AM/PN

= AB/PQ × AB/PQ [From Equation (ii) and Equation (iii)]

Step 6:

Using Equation (iii)

(ABC) / (PQR) =>

Attachments:
Answered by khushisaroj46
0

Answer:

this is answer

Step-by-step explanation:

i hope it will help you

Attachments:
Similar questions