Math, asked by ItxAttitude, 17 hours ago

Prove the following

tan(195 \degree) = 2 - \sqrt{3} tan(195°)=2−
3




Please provide step by step solution ​

Answers

Answered by EmperorSoul
13

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:tan(195 \degree)

\rm \:  =  \: tan(90\degree \times 2 + 15\degree)

We know,

\boxed{\tt{ tan(180\degree + x) = tanx \: }} \\

So, using this identity, we get

\rm \:  =  \: tan15\degree

\rm \:  =  \: tan(45\degree - 30\degree)

We know,

\boxed{\tt{ tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany}}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{tan45\degree - tan30\degree}{1 + tan45\degree \: tan30\degree}

\rm \:  =  \: \dfrac{1 - \dfrac{1}{ \sqrt{3} } }{1 + \dfrac{1}{ \sqrt{3}}  \times 1}

\rm \:  =  \: \dfrac{1 - \dfrac{1}{ \sqrt{3} } }{1 + \dfrac{1}{ \sqrt{3}}}

\rm \:  =  \: \dfrac{\dfrac{ \sqrt{3}  - 1}{ \sqrt{3} } }{\dfrac{ \sqrt{3} +  1}{ \sqrt{3}}}

\rm \:  =  \: \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}

\rm \:  =  \: \dfrac{ {( \sqrt{3} - 1) }^{2} }{ {( \sqrt{3}) }^{2}  -  {1}^{2} }

\rm \:  =  \: \dfrac{3 + 1 - 2 \sqrt{3} }{3 - 1}

\rm \:  =  \: \dfrac{4 - 2 \sqrt{3} }{2}

\rm \:  =  \: \dfrac{2(2 - \sqrt{3})}{2}

\rm \:  =  \: 2 -  \sqrt{3}

Hence,

\rm\implies \:\boxed{\tt{ tan195\degree = 2 -  \sqrt{3} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\boxed{\tt{ sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \: }} \\

\boxed{\tt{ sin(x - y) = sinx \: cosy \:   -  \: siny \: cosx \: }} \\

\boxed{\tt{ cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny \: }} \\

\boxed{\tt{ cos(x  -  y) = cosx \: cosy \:   + \: sinx \: siny \: }} \\

\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} \: }} \\

\boxed{\tt{ cot(x + y) =  \frac{cotx \: coty \:  -  \: 1}{coty \:  +  \: cotx}}} \\

\boxed{\tt{ cot(x  -  y) =  \frac{cotx \: coty \: +  \: 1}{coty \: - \: cotx}}} \\

\boxed{\tt{  {sin}^{2}x -  {sin}^{2}y = sin(x + y) \: sin(x - y) \: }} \\

\boxed{\tt{  {cos}^{2}x -  {sin}^{2}y = cos(x + y) \: cos(x - y) \: }} \\

Answered by nihasrajgone2005
1

Answer:

The value of tan 195 degrees is 0.2679491. . .. Tan 195 degrees in radians is written as tan (195° × π/180°), i.e., tan (13π/12) or tan (3.403392. . .). In this article, we will discuss the methods to find the value of tan 195 degrees with examples.

Tan 195°: 2 - √3

Tan 195° in decimal: 0.2679491. . .

Tan (-195 degrees): -0.2679491. . . or -2 + √3

Tan 195° in radians: tan (13π/12) or tan (3.4033920 . . .)

please drop some ❤️❤️❤️

Step-by-step explanation:

please f-o-l-l-o-w m-e bro please

Similar questions