Prove the following:
Tan²θ + cos²θ = sec²θ × cosec²θ - 2
(Class 10 | Mathematics | Introduction to Trigonometry)
Answers
Answer:
To prove ----->
( Sec²θ - 1 ) ( Cosec²θ - 1 ) = 1
Proof-----> We know that ,
1 + tan²θ = Sec²θ
=> tan²θ = Sec²θ - 1
We know that ,
1 + Cot²θ = Cosec²θ
=> Cot²θ = Cosec²θ - 1
LHS = ( Sec²θ - 1 ) ( Cosec²θ - 1 )
Putting Sec²θ - 1 = tan²θ and Cosec²θ - 1 = Cot²θ , we get ,
= ( tan²θ ) ( Cot²θ )
= ( tan²θ ) ( 1 / tan²θ )
= 1 = RHS
Additional information------->
1) Sin²θ + Cos²θ = 1
2) Sin²θ = 1 - Cos²θ
3) Cos²θ = 1 - Sin²θ
4) 1 + tan²θ = Sec²θ
5) tan²θ = Sec²θ - 1
6) Sec²θ - tan²θ = 1
7) 1 + Cot²θ = Cosec²θ
8) Cot²θ = Cosec²θ - 1
9) Cosec²θ - Cot²θ = 1
Explanation:
to prove tan²A + cot²A = sec²A × cosec²A - 2
RHS : (1 + tan²A)(1 + cot²A) - 2
=> 1 + cot²A + tan²A + tan²A * cot²A - 2
=> 1 + cot²A + tan²A + 1 - 2
=> cot²A + tan²A => RHS
hence proved