Math, asked by AestheticSky, 1 month ago

Prove the following:-

 \bigstar \boxed{\displaystyle \sf\sum\limits_{r = 0}^{n} { \sin}^{2} \bigg( \frac{2 \pi}{n} \bigg) = \frac{n}{2} }

Class - 11th

Please don't spam ! ​

Answers

Answered by mathdude500
27

Appropriate Question :-

Prove the following:-

\bigstar \boxed{\displaystyle \sf\sum\limits_{r = 0}^{n} { \sin}^{2} \bigg( \frac{2r \pi}{n} \bigg) = \frac{n}{2} }

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:{\displaystyle \sf\sum\limits_{r = 0}^{n} { \sin}^{2} \bigg( \frac{2r \pi}{n} \bigg)  }

Let we assume that,

\red{\rm :\longmapsto\:\dfrac{2\pi}{n} = x}

So, given can be rewritten as

\rm :\longmapsto\:{\displaystyle \sf\sum\limits_{r = 0}^{n} { \sin}^{2} \bigg( rx \bigg)  }

\rm \:  =  \:  \: \:{\displaystyle \:  \frac{1 }{2} \:   \sf\sum\limits_{r = 0}^{n} { 2\sin}^{2} \bigg( rx \bigg)  }

\rm \:  =  \:  \: \:{\displaystyle \:  \frac{1 }{2} \:   \sf\sum\limits_{r = 0}^{n}(1 - cos2rx)  }

\rm \:  =  \:  \: \:{\displaystyle \:  \frac{1 }{2} \:   \sf\sum\limits_{r = 0}^{n} 1} -  \:{\displaystyle \:  \frac{1 }{2} \:   \sf\sum\limits_{r = 0}^{n}(cos2rx)  }

\rm \:  =  \dfrac{1}{2}(n  + 1) - \dfrac{1}{2}(cos0 + cos2x + cos4x +  -  - cos2nx)

\rm \:  =  \dfrac{1}{2}(n  + 1) - \dfrac{1}{2}(1 + cos2x + cos4x +  -  - cos2nx)

\rm \:  =  \dfrac{1}{2}(n  + 1) - \dfrac{1}{2}  - \dfrac{1}{2}(cos2x + cos4x +  -  - cos2nx)

\rm \:  =  \dfrac{1}{2}(n  + 1 - 1) - \dfrac{1}{2}(cos2x + cos4x +  -  - cos2nx)

\rm \:  =  \dfrac{1}{2}(n) - \dfrac{1}{2}(cos2x + cos4x +  -  - cos2nx)

\rm \:  =  \dfrac{1}{2}(n) - \dfrac{1}{2}(cos2x + cos(2x + 2x) +  -  - cos(2x + (n - 1)2x)

We know,

\green{\rm :\longmapsto\:cosa + cos(a + d) + cos(a + 2d) + -  -  + cos(a + (n - 1)d} \\ \green{\rm \: =  \: \dfrac{sin\dfrac{nd}{2}  \: cos\dfrac{1}{2} (2a + (n - 1)d)}{sin\dfrac{d}{2} } }

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{n}{2} - \dfrac{1}{2}\bigg(\dfrac{sinnx \: cos\dfrac{1}{2}(4x + (n - 1)2x)}{sinx} \bigg)

\rm \:  =  \:  \: \dfrac{n}{2} - \dfrac{1}{2}\bigg(\dfrac{sinnx \: cos(2x + (n - 1)x)}{sinx} \bigg)

\rm \:  =  \:  \: \dfrac{n}{2} - \dfrac{1}{2}\bigg(\dfrac{sinnx \: cos(2x + nx - x)}{sinx} \bigg)

\rm \:  =  \:  \: \dfrac{n}{2} - \dfrac{1}{2}\bigg(\dfrac{sinnx \: cos(x + nx)}{sinx} \bigg)

\rm \:  =  \:  \: \dfrac{n}{2} - \dfrac{1}{2}\bigg(\dfrac{sinnx \: cos(1 + n)x}{sinx} \bigg)

Now, Substitute the value of x, we get

\rm \:  =  \:  \: \dfrac{n}{2} - \dfrac{1}{2}\bigg(\dfrac{sin2\pi \: cos(1 + n)\dfrac{2\pi}{n} }{sin\dfrac{2\pi}{n} } \bigg)

We know,

\boxed{ \rm{ sin2\pi = 0}}

So, above can be rewritten as

\rm \:  =  \:  \: \dfrac{n}{2}  - 0

\rm \:  =  \:  \: \dfrac{n}{2}

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\displaystyle \bf\sum\limits_{r = 0}^{n} { \sin}^{2} \bigg( \frac{2r \pi}{n} \bigg) = \frac{n}{2} }

Answered by singhmamta0207
1

Answer:

can you please follow 943050 see in my following and follow plzz then I will like your all ans

Similar questions