Prove the following
- Required step by step explanation
- Spam will be reported on spot.
Answers
Consider
We know,
So, on substituting all these values, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION :-
Sign of Trigonometric ratios in Quadrants
sin (90°-θ) = cos θ
cos (90°-θ) = sin θ
tan (90°-θ) = cot θ
csc (90°-θ) = sec θ
sec (90°-θ) = csc θ
cot (90°-θ) = tan θ
sin (90°+θ) = cos θ
cos (90°+θ) = -sin θ
tan (90°+θ) = -cot θ
csc (90°+θ) = sec θ
sec (90°+θ) = -csc θ
cot (90°+θ) = -tan θ
sin (180°-θ) = sin θ
cos (180°-θ) = -cos θ
tan (180°-θ) = -tan θ
csc (180°-θ) = csc θ
sec (180°-θ) = -sec θ
cot (180°-θ) = -cot θ
sin (180°+θ) = -sin θ
cos (180°+θ) = -cos θ
tan (180°+θ) = tan θ
csc (180°+θ) = -csc θ
sec (180°+θ) = -sec θ
cot (180°+θ) = cot θ
sin (270°-θ) = -cos θ
cos (270°-θ) = -sin θ
tan (270°-θ) = cot θ
csc (270°-θ) = -sec θ
sec (270°-θ) = -csc θ
cot (270°-θ) = tan θ
sin (270°+θ) = -cos θ
cos (270°+θ) = sin θ
tan (270°+θ) = -cot θ
csc (270°+θ) = -sec θ
sec (270°+θ) = cos θ
cot (270°+θ) = -tan θ
Consider
We know,
So, on substituting all these values, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION :-
Sign of Trigonometric ratios in Quadrants
sin (90°-θ) = cos θ
cos (90°-θ) = sin θ
tan (90°-θ) = cot θ
csc (90°-θ) = sec θ
sec (90°-θ) = csc θ
cot (90°-θ) = tan θ
sin (90°+θ) = cos θ
cos (90°+θ) = -sin θ
tan (90°+θ) = -cot θ
csc (90°+θ) = sec θ
sec (90°+θ) = -csc θ
cot (90°+θ) = -tan θ
sin (180°-θ) = sin θ
cos (180°-θ) = -cos θ
tan (180°-θ) = -tan θ
csc (180°-θ) = csc θ
sec (180°-θ) = -sec θ
cot (180°-θ) = -cot θ
sin (180°+θ) = -sin θ
cos (180°+θ) = -cos θ
tan (180°+θ) = tan θ
csc (180°+θ) = -csc θ
sec (180°+θ) = -sec θ
cot (180°+θ) = cot θ
sin (270°-θ) = -cos θ
cos (270°-θ) = -sin θ
tan (270°-θ) = cot θ
csc (270°-θ) = -sec θ
sec (270°-θ) = -csc θ
cot (270°-θ) = tan θ
sin (270°+θ) = -cos θ
cos (270°+θ) = sin θ
tan (270°+θ) = -cot θ
csc (270°+θ) = -sec θ
sec (270°+θ) = cos θ
cot (270°+θ) = -tan θ