Prove the following
- Required step by step explanation
- Spam will be reported on spot.
Answers
Step-by-step explanation:
Consider
\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \dfrac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \}cos(23π+x)cos(2π+x)cos(
2
3π
+x)cos(2π+x){cot(
2
3π
−x)+cot(2π+x)}cos(23π+x)cos(2π+x)
We Know,
\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) = sinxcos(
2
3π
+x)=sinx
\rm \: {cos \: (2\pi + x) }cos(2π+x)
\rm \: \cot \bigg( \dfrac{3\pi}{2} - x \bigg) \: = \: tanxcot(
2
3π
−x)=tanx
\rm \: cot(2\pi + x) \: = \: cotxcot(2π+x)=cotx
So, on substituting all these values, we get
\rm \: = \: sinx \: cosx \: (tanx \: + \: cotx)=sinxcosx(tanx+cotx)
\rm \: = \: sinx \: cosx \: \bigg(\dfrac{sinx}{cosx} + \dfrac{cosx}{sinx}=sinxcosx(
cosx
sinx
+
sinx
cosx
\rm \: = \: sinx \: cosx \: \bigg(\dfrac{ {sin}^{2}x + {cos}^{2}x}{cosx \: sinx}=sinxcosx(
cosxsinx
sin
2
x+cos
2
x
\rm \: = \: 1=1=1=1
Hence,
\boxed{\tt{ \cos \bigg( \frac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \frac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \} = 1}}
cos(
2
3π
+x)cos(2π+x){cot(
2
3π
−x)+cot(2π+x)}=1
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION :-
Sign of Trigonometric ratios in Quadrants
sin (90°-θ) = cos θ
cos (90°-θ) = sin θ
tan (90°-θ) = cot θ
csc (90°-θ) = sec θ
sec (90°-θ) = csc θ
cot (90°-θ) = tan θ
sin (90°+θ) = cos θ
cos (90°+θ) = -sin θ
tan (90°+θ) = -cot θ
csc (90°+θ) = sec θ
sec (90°+θ) = -csc θ
cot (90°+θ) = -tan θ
sin (180°-θ) = sin θ
cos (180°-θ) = -cos θ
tan (180°-θ) = -tan θ
csc (180°-θ) = csc θ
sec (180°-θ) = -sec θ
cot (180°-θ) = -cot θ
sin (180°+θ) = -sin θ
cos (180°+θ) = -cos θ
tan (180°+θ) = tan θ
csc (180°+θ) = -csc θ
sec (180°+θ) = -sec θ
cot (180°+θ) = cot θ
sin (270°-θ) = -cos θ
cos (270°-θ) = -sin θ
tan (270°-θ) = cot θ
csc (270°-θ) = -sec θ
sec (270°-θ) = -csc θ
cot (270°-θ) = tan θ
sin (270°+θ) = -cos θ
cos (270°+θ) = sin θ
tan (270°+θ) = -cot θ
csc (270°+θ) = -sec θ
sec (270°+θ) = cos θ
cot (270°+θ) = -tan θ