Prove the following
Answers
Answered by
4
here your answer sir ihope you like my answer sir
Explanation:
(secθ+tanθ)(1−sinθ),
=(1cosθ+sinθcosθ)(1−sinθ),
=(1+sinθcosθ)(1−sinθ1),
=1−sin2θcosθ,
=cos2θcosθ,
=cosθ, as desired!
hope you like my answer sir plz mark as brainlist if ihas correct
Explanation:
(secθ+tanθ)(1−sinθ),
=(1cosθ+sinθcosθ)(1−sinθ),
=(1+sinθcosθ)(1−sinθ1),
=1−sin2θcosθ,
=cos2θcosθ,
=cosθ, as desired!
hope you like my answer sir plz mark as brainlist if ihas correct
mohmmedsufiyanali19:
u r most welcome
Answered by
3
I'm replacing theta by A for convenience.
L.H.S = sec A + tan A
= 1/cos A + sin A/cos A
= (1 + sin A)/cos A
= (1 + sin A)(1 - sin A)/cos A (1 - sin A)
= (1 - sin² A)/ cos A (1 - sin A)
= (cos ² A)/cos A (1 - sin A)
= cos A/1 - sin A = RHS.
Q.E.D.
L.H.S = sec A + tan A
= 1/cos A + sin A/cos A
= (1 + sin A)/cos A
= (1 + sin A)(1 - sin A)/cos A (1 - sin A)
= (1 - sin² A)/ cos A (1 - sin A)
= (cos ² A)/cos A (1 - sin A)
= cos A/1 - sin A = RHS.
Q.E.D.
Similar questions