Math, asked by khushi15686, 17 days ago

Prove the following

 \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos8x} } }  = 2cosx

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Consider LHS

\sqrt{2 + \sqrt{2 + \sqrt{2 + 2cos8x} } } \\

can be rewritten as

\rm \:  = \sqrt{2 + \sqrt{2 + \sqrt{2(1 + cos8x)} } } \\

We know,

\boxed{ \rm{ \:1 + cos2x =  {2cos}^{2}x \: }} \\

\rm \:  =  \sqrt{2 +  \sqrt{2 +  \sqrt{2. {2cos}^{2}4 x} } }  \\

\rm \:  =  \sqrt{2 +  \sqrt{2 +  \sqrt{ {(2cos4x)}^{2}} } }  \\

\rm \:  =  \sqrt{2 +  \sqrt{2 +  2cos4x } }  \\

\rm \:  =  \sqrt{2 +  \sqrt{2(1 +  cos4x) } }  \\

\rm \:  =  \sqrt{2 +  \sqrt{2( {2cos}^{2}2 x) } }  \\

\rm \:  =  \sqrt{2 + 2cos2x}  \\

\rm \:  =  \sqrt{2(1 + cos2x)}  \\

\rm \:  =  \sqrt{2( {2cos}^{2} x)}  \\

\rm \:  = 2cosx \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\sqrt{2 + \sqrt{2 + \sqrt{2 + 2cos8x} } } = 2cosx \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered} { \boxed{ \begin{array}{c} \underline{\underline{ \color{orange} \text{Additional \: lnformation}}} \\&  \rm \: sin2x  \: =  2 \: sinx \: cosx\:\\ &  \rm \: cos2x = 1 -  {2sin}^{2}x \\ &  \rm \: cos2x =  {2cos}^{2}x - 1 \\ &  \rm \: cos2x =  {cos}^{2}x -  {sin}^{2}x \\ &  \rm \:tan2x =  \dfrac{2tanx}{1 -  {tan}^{2} x} \\ &  \rm \: sin2x =  \dfrac{2tanx}{1 +  {tan}^{2}x } \\ &  \rm \:sin3x = 3sinx -  {4sin}^{3}x \\ &  \rm \: cos3x =  {4cos}^{3}x - 3cosx \\ &  \rm \: tan3x =  \dfrac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x}  \end{array}}}\end{gathered}

Answered by AnanyaBaalveer
15

\large\underline{\sf{Solution}}

Consider LHS

 \sqrt{2 +  \sqrt{ 2 + \sqrt{2 + 2 \cos(8x) } } }

Can be written as

\large{\sf{ \sqrt{2 \sqrt{2 \sqrt{2(1 +  \cos(8x) } } } }}

We know,

1 +  \cos(2x)  =  {2 \cos}^{2}x

 \sqrt{2 +  \sqrt{2 +  \sqrt{2.2 { \cos}^{2} 4x} } }

 \sqrt{2 +  \sqrt{2 +  \sqrt{(2 { \cos4x) }^{2} } } }

 \sqrt{2 +  \sqrt{2 + 2 \cos4x} }

 \sqrt{2 \sqrt{2(1 +  \cos4x} }

 \sqrt{2 + { \sqrt{2(2 { \cos}^{2}2x } } }

 \sqrt{2 + 2 \cos2x}

 \sqrt{2(1 +  \cos2x}

 \sqrt{2 (2 \cos {}^{2}x) }

2 \cos x

Similar questions