Math, asked by vishesh5854, 1 year ago

Prove the Following :

 \sqrt{ \frac{1 -  \cos \: a }{1 + cos \: a} }  \:  = cosec \: a \:  - cot \: a

Answers

Answered by BrainlyKing5
131

Answer :

Given To Prove

 \longrightarrow \: \mathsf{\sqrt{ \dfrac{1 - \cos \: a }{1 + \cos \: a} } \: = \cosec \: a \: - \cot \: a}

Proof

Taking LHS

 \longrightarrow \: \mathsf{\sqrt{ \dfrac{1 - \cos \: a }{1 + \cos \: a} }}

Rationalising the denominator we have

 \longrightarrow \: \mathsf{\sqrt{ \dfrac{1 - \cos \: a }{1 + \cos \:a} } }

 \longrightarrow \: \mathsf{\sqrt{ \dfrac{1 - \cos \: a }{1 + \cos \:a} \times \dfrac{1 - \cos \: a}{1 - \cos a} }}

Now we know

\boxed{\boxed{\mathsf{ (a + b) (a - b) = a^2 - b^2}}}

 \longrightarrow \: \mathsf{\sqrt{ \dfrac{ {(1 -  \cos a) }^{2}  }{ {(1)}^{2}   -   { \cos }^{2} \: a}  }}

Now We have

\boxed{\boxed{\mathsf{\bigstar \: 1 - {\cos}^{2} a = {\sin}^2 a}}}

 \longrightarrow \: \mathsf{\sqrt{ \dfrac{  {(1 -  \cos a )}^{2} }{ { \sin }^{2} a }}}

 \longrightarrow \: \mathsf{ \dfrac{  1 -  \cos a }{ \sin a }}

 \longrightarrow \: \mathsf{ \dfrac{  1 }{ \sin a } -  \dfrac{ \cos a}{ \sin a} }

Now we know

\boxed{ \boxed{\mathsf{\bigstar \: \dfrac{  1 }{ \sin a } = \cosec a  \:  \: \& \:  \: \dfrac{ \cos a}{ \sin a} = \cot a}}}

Therefore We have

LHS

\implies \mathsf{\cosec a \: - \cot a}

RHS

\implies \mathsf{\cosec a \: - \cot a}

Therefore We Have

\large \mathcal{\bigstar \:LHS \: = \: RHS}

\rule{300}{1}

\underline{\underline{\mathsf{\star \: More \: To \: Know \: \star}}}

\longrightarrow \: \underline{Pythagorean\: Identies}

\mathsf{\star \: {\sin}^{2} \theta + {\cos}^{2} \theta = 1}

\mathsf{\star \: {\tan}^{2}  + 1 =  {\sec}^{2} \theta }

\mathsf{\star \: {\cot}^{2}  + 1 =  {\cosec}^{2} \theta }

Answered by Anonymous
143

{\bold{\underline{\underline{Answer:}}}}

 \implies \: <strong>To</strong> \:<strong>Prove</strong> =  \sqrt{ \frac{1 - cos \: a \: }{1  + cos \: a} } = cosec \: a - cot \: a

Proof :

Taking L.H.S we get

 \implies \sqrt{ \frac{1 -  \cos \: a }{1 +  \cos \: a } }

\implies Multiply Numerator and denominator by (1 – Cos a)

 \implies \sqrt{ \frac{1 - cos \: a}{ 1 +  \cos \: a } }

 \implies \sqrt{ \frac{1 -  \cos \: a }{1 + cos \: a}  \times  \frac{1 -  \cos \: a }{1 -  \cos \: a } }

since ( a + b ) ( a - b ) = a²2 - b²

 \sqrt{ \frac{(1 - cos \: a^{2}) }{(1^{2}) - cos^{2}\:a}}

\implies We know that (1–Cos²a = Sin² a)

 \sqrt{ \frac{1 -  \cos \:a }{ \sin ^{2} a }}  =  \frac{1 - cos \: a}{sin \: a}

\implies \frac{1}{ \sin}  -  \frac{ \cos }{sin}

\implies \: cosec \: a  - cot \: a

\implies Hence Proved.

_________________________________

 \frac{1}{sin \: a}  = cosec \: a

 \frac{ \cos \: a }{  \sin \: a }  = cot \: a

Similar questions